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Abstract: We develop a numerical method to compute the density of a specific nonlinear
stochastic delay system, with no sampling. This system arises as a switch-type control model
for human balance. Numerical tests against the Euler-Maruyama method show that our method
is capable of computing accurate solutions. In particular, the method captures the covariance of
the solution at the present and delayed times. This is accomplished through the time-evolution
of a Gaussian approximation of the joint density at the present and delayed times. Issues of
circularity prevent the numerical solution of the Fokker-Planck equation for stochastic delay
systems. Our method bypasses these issues and offers one of the first deterministic algorithms
to compute the density of a nonlinear stochastic delay system.
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1. INTRODUCTION

Research into the human nervous system’s internal control
mechanism for maintaining upright balance and posture
has led to a number of mathematical models (Eurich and
Milton, 1996; Cabrera, 2005; Milton et al., 2009; Boulet
et al., 2009; Suzuki et al., 2012; Kowalczyk et al., 2014).
Such models typically feature nonlinear feedback, time
delay(s), and noise. In this work, we focus on a model
that incorporates feedback through a switch-type control
mechanism; the model we analyze is the 7 = 7/ case of Eq.
(1.2) in (Milton, 2011). The model consists of the following
nonlinear stochastic delay differential equation (SDDE):

dXt = f(Xt_T)dt + th (1&)
C y<—p

fly)=ay+<0 lyl <8 (1b)
-C Yy > ﬁa

where «, 8, C, T are positive constants, and W; is the
Wiener process or standard Brownian motion. In (1a),
X, is the angle of displacement of the body from the
line of gravity at time ¢t. We assume that X, is a given,
deterministic function for —7 <t < 0.

If the time delay 7 in (la) is zero, the resulting equation
is a stochastic differential equation (SDE). With a smooth
approximation to the drift function f, we can compute
the p.d.f. of this SDE by solving the associated Fokker-
Planck or Kolmogorov equation, a deterministic partial
differential equation. Because the associated Fokker-Plank
equation is circular when 7 # 0, (Longtin, 2009), SDDE
are typically solved using Monte Carlo methods, which
involve generating large numbers of sample paths.

In this paper we present a numerical method to solve
for the p.d.f. of the nonlinear SDDE (1) with no sam-
pling. The method represents the unknown p.d.f. using

a discretization on a spatial grid; the p.d.f. that is com-
puted is not constrained to come from a particular family
of densities. In particular, though our method makes a
Gaussian approximation for a long-range joint density, the
marginal density that is computed is not necessarily Gaus-
sian. While we do not establish rigorous convergence of the
method here, we do provide evidence that the method is
accurate enough for many purposes.

There is no existing method to compute the p.d.f. of
a nonlinear SDDE with large delay, without simulating
sample paths. The method described in this paper takes a
first step in this direction.

2. DERIVATION OF NUMERICAL METHOD

Let £ > 1 be an integer and set the time step h = 7/¢.
Let {Z,} be an i.i.d. family of standard (zero mean, unit
variance) Gaussian random variables. Then the Euler-
Maruyama discretization of (1) is

Tng1r = Tn + [ (@n_o)h + VhZnis. (2)
Because we assumed the initial segment {X, : —7 < s <
0} is deterministic, the initial conditions z_g,--- ,z( are

known constants. Our approach is to derive from (2) a de-
terministic evolution equation that yields an approximate
density p(z,). We view (2) as a reasonable starting point
since convergence as h — 0 has been established (Buckwar
et al., 2008; Gydngy and Sabanis, 2013).

2.1 FEwvolution Equation

Let the joint density of x, = (Zn,Zn—1,...,Zn_¢) be
denoted by p(x,). Then we have
P(Xnt1) :/ P(Tpg1|Xn)P(Xn ) ATy (3)
Tn—L
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From (2), the conditional density p(2,11|xy) is Gaussian
with mean x,, + f (2, —¢)h and variance h. This observation
shows that p(2,11|xn) = P(@nt1|Tn, Tn_¢). In principle,
(3) is a self-contained system for evolving the joint density
p(x,). The joint density p(x,) is a scalar function of
£ + 1 variables. It is impractical to store and manipulate
spatial discretizations of such functions when ¢ > 4, or
equivalently, for time steps h < 7/4. For this reason,
we seek a simpler evolution equation. (As a Monte Carlo
approach, one can directly simulate sample paths of (2);
here we seek a method that does not involve sampling.)

Our first step is to integrate both sides of (3) with respect
to (Tp—1,.-,ZTn—¢t1). This yields

p(anrlaxn):/p(xn+1|xn,$n7€)p(xnal'nf@)dwnfb (4)
Tn—2
If p(xn,zn—p¢) is known, we can use (4) to compute

p(Tpt1,x,). In order to close the loop, we must be able to
compute p(Tp+1, Tn—re+1). This is explained next.

2.2 Long-Range Probability

We approximate p(z,,Z,—¢) by a two-dimensional Gaus-
sian with mean vector m, ,_, and covariance matrix
Yn.n—¢. While the true joint density is not Gaussian, a
Gaussian is the simplest conceivable model that includes
the possibility of covariance between the two random vari-
ables x,, and x,_,. In contrast, if we were to approximate
P(Th, Tp—g) = p(n)p(Tn—r), although the joint density is
allowed to have a non-Gaussian shape, we are essentially
declaring z,, and x,,_; to be independent and hence to have
zero covariance. Through extensive tests of approxima-
tions of p(zy,,Tn—¢), we find that modeling the covariance
is essential; models that assume independence or even
conditional independence produce errors that are orders
of magnitude larger than the Gaussian approximation.

In order to compute p(Tp41,Zn—r¢+1), we must determine
the covariance matrix ¥, 1 n—¢+1. It will turn out to be
necessary to compute the more general covariance matrix
Yip+41,n+1—¢- Hence we compute

Elzn11%n41-4]

7//xn+1zn+1 qp(-rn—i-lyxn—i-l q)dxn+1dxn+l q

////xn+1xn+1 qp(xn+1|xn7xn+1 qvxn Z)

X P(Tns Tnt1—qs Tne)dLnt1dTndTp1—qdTrn_p.

Recall that p($n+1|$ml‘n+1—m$n—4) is p(@n+1|Tn, Tnr),
which is Gaussian with known mean and variance. Hence
we carry out the integration over x, 1 first, and obtain

xn+lxn+1 q]

— [[[ nratan + b0

><P Tny Tn+l—q; Tn— Z)d'rndanrl qd'rn V4

= //xnxn-‘rl—qp(xnvxn-i—l—q)dxnd-rn-l-l—q

+ h// :L'n—&-l—q.f(xn—@)p(xn-‘rl—qa zn—é)dxn+1—qdzn—€
= ElznTni1—q] + hE[Tni1-gf (Tn-0)]- (5)

Overall, we have shown that

COV[{E,H,l, anrlfq} = COV[xnxn%»lfq]
+ (E["Tn] - E[xn+1])E[xn+1fq]
+ hE[zn41-qf (xn—r)]-  (6)

Substituting ¢ = /¢, we see that we cannot compute
Yn+1n—t+1 without ¥, ,,_s41. To ensure that we have
Ynn—t+1, we track all joint densities p(xy, Tni1—q) for
all ¢ = 2,...,¢. To make this tractable, we assume all
of these joint densities are Gaussian with mean p,, , 1,
and covariance matrix X, 414

We now show that this yields a self-consistent update
scheme. Suppose that at time step n, we have used
(T, Tn—g) in (4) to compute p(x,41, z,). Using quadra-
ture, we can compute the mean and variance of x,i1,
which we store. Further suppose we have all of the inputs
required to evaluate the right-hand sides of (6) for ¢ =
2, ..., L. This consists of {Emﬂ_l_q}flﬁ, {EnH_qm_g}g:Q,

n+1

together with the means of {z;}72 .

With all of this information, we use (6) together with
the stored variances of z,41 and z,41_, to generate
and store the new covariance matrix 3,1 n4+1—4 for each
q=2,...,0. The new mean vector p,, q , .1, is directly
determined by the stored means of z,,; and z,41_4. This
is because the vector of means of the marginal densities
of p(Tn41,Tnt1-q) equals the mean vector of the joint
density. The ¢ = ¢ case of the new mean vector and
new covariance matrix gives us enough information to
compute p(Tpn41,Tn+1—¢), enabling the use of (4) at the
next time step. Hence we compute p(2y,42,Zn4+1), which
in turn yields the expected value of x,, 5. This is the only
new mean value required to use (6) at the next time step.

To assemble the remaining information required to use
(6) at the next time step, we need {Zn_t'_l,n_t'_g_q}g:z} and

{En+27q7n+17€}g:2- In {Zn+l,n+2fq}§:2; the q = 2 term
can be computed by applying quadrature to p(z,t1, ).
The remaining terms in {Zn+17n+2_q}§:2 are a subset of
the new covariance matrices we generated above. The col-
lection {Zn+2,q$n+1,[}§:2 consists entirely of covariance
matrices computed and stored at previous time steps.

2.8 Computation of the Nonlinear Term in (6)

Let us explain in detail how we compute E[zy,41—qf(Tn—r)]
for the particular nonlinearity f given by (1b). We proceed
as follows, abbreviating p(2,4+1—q, Tn—¢) as p:

E[xn+1—qf(xn—l)}
= // $n+17qf(mn72)p($n+lfq7xnff) dxn«klfqunfl
—_———

P

-B
:// xn+1—q(axn—€+C)pd‘rn+l—qdzn—£
Ty g=—00

B

+// $n+17qaxn7€pdmn+lfqdl‘n7€
Tp—e=—0
LS

+// Tnt1—q(@Tn_s — C)pdTpt1—qdTn_¢.
Tp—e=8

Combining terms with « and C, respectively, we obtain
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