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Abstract: The stability analysis of machining processes is of utmost importance in order to
guarantee high removal rates while at the same time maintaining acceptable surface finish and
tool life. One of the key mechanisms for losing stability in machining is chatter vibration, which
is a self-excited vibration due to the surface regeneration effect. This type of chatter occurs due
to the variation in the dynamic cutting load between successive tool or workpiece rotations. A
common approach to capture this dependency on prior states is to model the machining process
using delay differential equations. Since chatter has detrimental effects on the cutting process,
the ability to predict the combinations of the cutting process parameters that will result in
chatter-free cutting is highly desirable. In this paper we describe how the stability of turning
and milling processes can be studied using the spectral element approach. The results show that
this approach can successfully predict the chatter-free regime in turning and milling. Further,
we describe how recent numerical implementations of the approach to a wider class of delay
equations can enable the analysis of more complex and realistic machining models.
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1. INTRODUCTION

Conventional material removal processes such as turning
and milling still constitute a large class of modern machin-
ing processes. Therefore, it is beneficial to optimize these
processes such that the maximum amount of material
is removed while at the same time satisfying important
manufacturing constrains such as the surface quality, tool
life, and noise level.

One of the most prominent problems in machining pro-
cesses is regenerative chatter which is typically referred
to simply as chatter (Quintana and Ciurana (2011)).
These variations are the result of the phase shift between
the cutting marks left on the surface between successive
tool/workpiece revolutions. A well-accepted mechanism
for explaining and describing chatter includes delays in
the governing equation of the system. The resulting delay
differential equations (DDEs), which also appear in many
areas of science and engineering, have been an active topic
of research for over six decades. Both frequency (Altintag
and Budak (1995); Otto et al. (2014)) and time domain
(Insperger and Stépdn (2004); Butcher et al. (2009); Kha-
sawneh et al. (2012)) methods were developed to ascertain
the stability of machining models. One of the recent meth-
ods that has been successfully used to study the stability of
delay differential equations is the spectral element method
(Khasawneh and Mann (2011a)). The spectral element
approach is robust and flexible and it is capable of fast con-
vergence as was shown in Tweten et al. (2012). Therefore,
it can have useful applications in the study of machining
models and delay equations in general.

In this paper the stability analysis of DDEs using the
spectral element approach (SEA) is first described. We

then use the SEA to study the stability of a turning
and a milling model. The resulting stability diagrams,
which chart the chatter and the chatter-free regime in
the space of the cutting depth and the spindle speed, are
presented and compared to results from the literature. The
paper concludes with some available and some possible
extensions for the approach.

2. STABILITY ANALYSIS WITH SPECTRAL
ELEMENT METHOD

In order to simplify the presentation, we describe the
stability analysis for systems of the form

fl—i = A(t)z(t) + B(t)z(t — 1), (1)
where A and B are the d x d system matrices, and 7 is
the time delay. In this paper, we consider the autonomous
(A(t) = A, B(t) = B) case and the non-autonomous time-
periodic case (A(t+T) = A(t),B(t+T) = B(t)), and we
study the corresponding stability of stationary solutions
(autonomous case) and periodic orbits (non-autonomous
case) of (1). Although the approach can be used for
arbitrary T to 7 ratios (Khasawneh and Mann (2013)),
we restrict the presentation to the case 7 = T, i.e., to
constrained meshes.

Since it is often impossible to deal directly with the
infinite dimensional DDE (1), it must first be discretized
to produce a finite dimensional approximation. The idea
is that as the degree of approximation increases, the
solution of the finite dimensional problem converges to
that of the infinite dimensional problem. The goal of the
approximation is to construct a finite dimensional dynamic
map in the form

T = U1, (2)
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where z,, and z,,_1 are the vectors of the discretized
states on [—7 + T, T] and [—T,0], respectively, whereas
U is the monodromy matrix, which represents a finite
dimensional approximation to the infinite dimensional
monodromy operator. The monodromy operator U corre-
sponds to the evolution family F of the linearized system
(Diekmann et al. (1995)) evaluated in the coefficients’
period T with initial instant 0, i.e., U = E(T,0). This
operator maps the initial state defined on [—7, 0] into the
state one T later, [T'— 7, T]. The stability of the system is
then investigated using the eigenvalues of U according to
the criteria shown in Fig. 1.
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Fig. 1. The stability criteria dictates that all the eigen-
values, p, of the monodromy operator U, should lie
within the unit circle in the complex plane.

The first step for ascertaining the stability of (1) using
SEA is to discretize the period [0, 7] using a finite number
of temporal elements E. Each element is described by the
interval

€j = [tgvt?)v (3)

where t;f and t% denote the left and right element bound-
aries, respectively, with the length of the jth element given
by

hj =t —t5. (4)
The index j starts at the leftmost element on the time
line, i.e., e = [—7,—7 4+ h1). A local normalized time

n = o/h; is defined within each element where o € [0, h;]
is the local time while 7 € [0, 1]. The barycentric Lagrange
formula is then used to obtain an approximate expression
for the states over each element using n + 1 distinct, local
interpolation nodes normalized by h; according to

n+1

x;(t) = Z oi(n)zji, (5)

where z;; = x;(t;) with ¢ indicating the ith local inter-
polation node, and ¢; are the trial functions that can
be calculated using the barycentric Lagrange formula in
Higham (2004)
Wi

¢i(n) = #7 (6)

Wk

kX::I ="k

where for node 7y the trial functions must satisfy

1, 1=k
di(m) = {0’ z# 5

while the barycentric weights wy, are given by

1 =1 n+1 (8)
Moy (=m0
In this study we use (6) to obtain the trial functions
since it has better numerical stability and requires less
computation than the conventional Lagrange representa-
tion, see Berrut and Trefethen (2004); Higham (2004). The
barycentric weights can also be used to obtain the value
of the derivative of the trial functions evaluated at the
interpolation nodes according to

(7)

Wk
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Substituting the expression from (5) into (1) gives
n+1 n+1

> ééi(ﬁ)fﬂji — Aty + )Y ¢i(n)ajs
=1 i=1

n+1
— Bty +1) Y ¢i(n)x(j_n,); = error, (10)
i=1
where the residual error is due to the approximation
procedure while n. indicates the number of elements used
to discretize the states in [0,7]. We emphasize that this
presentation assumes a constrained mesh and temporal
elements of uniform length.

We minimize the errors in a weighted integral sense (10)
(Reddy (1993)) over each temporal element. Specifically,
(10) is multiplied by a set of independent weight functions
¥p(n) where p = 1,2,...,n and is integrated over the
normalized length of each element within the constrained
mesh according to

1 n+1

n+1
/ [Z hqugi(n)xji — At +m) 3 dim)zji

0
n+1

=B+ 1) Y () vl dn =0, (11)

In this study we chose the weight functions to be the set
of the n shifted Legendre polynomials.

The weighted residual integral in Eq. (11) is often difficult
to evaluate analytically. Therefore, analytical integration
is substituted by a quadrature rule which uses n + 1
quadrature points over each element, which coincide with
the n + 1 interpolation nodes, according to

n+1 n+1 1. n+1
> wi (Z 7 0ilm)asi — Ay +me) Y dilne )y
= i=1 "7 i=
k=1 1 . 1
- B(t5 + k) Z ¢i(nk):cj*,i)wp(nk) =0, (12)
i=1

where 1 and wy are the quadrature nodes and weights,
respectively.

To construct a dynamic map, each discretization point
in [0,7T] is mapped by 7. Since (1) is linear in xj; and
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