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Abstract: This paper presents a numerical method for the stability analysis of retarded
functional differential equations with time-periodic coefficients. The method approximates the
solution segments, corresponding to the end points of the principal period, by their piece-
wise Lagrange interpolants. Then a mapping between these solution segments is obtained by
the minimization of the least-square integral of the residual error. Finally, stability properties
are determined using the matrix approximation of the monodromy operator, obtained by this
mapping, according to the Floquet theorem. The formulation of the method is presented for an
equation of general type while results are shown for the delayed oscillator.
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1. INTRODUCTION

In the recent decades the significance of time-delay has
been discovered in an increasing number of applications
in engineering and biosciences. Machine tool vibrations
(??), wheel dynamics of vehicles (?), traffic dynamics (?),
control (?), human balancing (?), population dynamics (?)
and epidemiology (?) can be mentioned as examples. In
the majority of the above applications it is desired to keep
the system in the proximity of a particular state or mo-
tion by a proper tuning of system parameters. Therefore,
stability properties of time-delay systems has been given
an increasing attention and, as a result, many analytical
and numerical methods can be found on their linear sta-
bility analysis. A commonly used analytical method is the
D-subdivision method (?), while examples for numerical
methods are the semi-discretization method (?), spectral
element method (?), pseudospectral collocation method
(?) or methods based on the truncation of Hill’s infinite
matrix (e.g. 77).

Although time dependency of the system parameters are
often neglected, therefore the particular phenomenon is de-
scribed by time-invariant (autonomous) differential equa-
tions, this simplification cannot be justified in all cases.
For instance, milling operations, turning operations with
spindle speed variation or digitally controlled machines are
inevitably time-varying systems. The governing equations
for these systems are usually modelled as differential equa-
tions with time-periodic parameters, and their stability
can be determined using the Floquet theory.

This paper deals with the formulation of a method for the
numerical stability analysis of linear retarded functional
differential equations (RFDE) with time-periodic coeffi-
cients. First, the main steps of the method are presented
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for a RFDE of general type. Then it is applied to a par-
ticular example: the delayed oscillator. For this example
stability charts are constructed and the convergence of
stability boundaries are demonstrated. Finally, based on
these results, some conclusions are drawn.

2. METHOD

In this section the formulation of the method is presented
for a RFDE involving point delays and distributed delay
with periodic coefficients of principal period 7', having the
form

o —b
FO=ADy ()Y Buty(t-m)+ [ +(t0)y(t+0)d6, (1)
=1 —a

where y : R - R"; A/B; : R - R"™™;, 0 < 7,1 =
1,2,...,0;0<b<a;v:R? = R"™; and A(t) = A(t +
T); Bi(t) = By(t + 1), 1 = 1,2,...,05 ¥(t,0) = ~v(t +
T,6), V6 for all t. The mapping between a solution segment
y 7Tttt and an initial function y~70 is given by the
solution operator as y ="ttt = UY(t))y ™Y, where 7 >
max{a, T, T2, ...Ts}. Here and in the following, notation
y»? refers to {y(t): [a,b]}. According to the Floquet
theory the stability of (1) can be determined from the
eigenvalues of the monodromy operator U(T). Namely,
(1) is stable if and only if all the eigenvalues of U(T)
have modulus less than one (see Chapter 8 in ? for
details). Although there exist some counterexamples (see
e.g. (7)), in general, the eigenvalues of the monodromy
operator cannot be determined in closed form, therefore
an approximation of U(T) is necessary. In this section
a method is presented for the calculation of the matrix
approximation U of U(T), for which the above stability
condition can easily be checked.

After performing numerical integration using Gaussian
quadrature, (1) can be approximated by the RFDE
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y(t) = t =) (2)

)+ By(t)y(

which contains point delays only. Here

B, (t) = “52¥(t, 0p—o)Wp—o, 3)
Tp = —0p—s forp:o+1,cr+27...,m and 0, = “T_bnq—
b ¢ [—q,—b], where {ng}o—y € [-1,1] are the set
of quadrature nodes with m = o + p. For convenience

71 < 19 < ... < 7 is assumed. In the following the
approximate system (2) is studied.

Consider the solution segment y~ ™7 where 7 = KT and

K:{[Tm/T] if 7, modT =0
[Tm/T]+1 otherwise

with [-] denoting the integer part. Define the linear

operator A as
y(t—1p) tE(O,T]}

Ay{'( i
: (5)

which maps the solution segment y~ ™7 to zero. Split
the solution segment y~"™7 onto (K + 1)E number of
equidistant subsegments (referred to as elements in the
sequel) as

(4)

vy, =y Dhkh, (6)
k=-FEK+1,-FEK+2,...,E, where h = T/FE is the
length of elements. The connection between these elements
are defined by conditions

yk(kh) = yi11(kh) (7)
k = —-EK +1,-EK 4+ 1,...,FE — 1. The splitting of
solution segment y~ ™7 transforms (2) into the system of
differential equations
ZB

where t € ((k—1)h, kh] and k = 1, 2.,
conditions (7) and

Yk (t) yk,p (8)

FE, with boundary

Yip(t) =
{yk_rp_l(t) if (t—mp) € (k—rp—2)h, (k—rp,—1)h]
Yk—r, () if (t—7p) € (k—rp—1)h, (k—rp)h]
9)
where 7, = [1,/h]. System (8) is equivalent to the system

of operator equations

m m
SkYk - Z kap}’k—rp—l - ZRk7PYk—rp =0,

(10)
p=1 p=1
k=1,2,...,FE, where the operators are defined as
k ye(t) — A)yr(t) t € ((k—1)h,kh]
= 11
Sk {0 otherwise (11)
Qk+rp+1,pyk —
B, (t+7,)ye(t—1p) (t—7p) € (kh— ayp, kh] (12)
0 otherwise
Rk+rp,pyk _
B,(t+7)yk(t—7p) (t—7p) € (k—1)h,kh — ] (13)
0 otherwise

with a;, = 7, mod h. By the introduction of new element-
wise coordinate ¢ = 2(t—(k—1)h)/h—1 the above operators
have the form

Sk}’k =
2VAO ~ A (MG yilQ) ce (1] gy
0 otherwise
Qk-H‘p-‘rl,Pyk _
B, (WHH%)h) Vi (¢+2-8,) ¢ € (—1,—14 5]
0 otherwise
(15)
Rk’-l—?“p,py _
B, (M5 4 tr 1) yi (¢-8,) € € (~1+ B, 1]
0 otherwise
(16)

where 8, = 2a,,/h. Due to this coordinate transformation
boundary conditions (7) are given by

ye(1) = yr+1(=1) (17)
k=—-FEK+1,—-EK+2,...,E—1. Note that y ™7 satisfies
the system of operator equations (10) with boundary
conditions (17) and satisfies

Ay =0, (18)
also. Therefore, the uniqueness of the solutions of both
(10) and (18) would result the equivalence of these two
problems.

For a given initial function y~™° operator equation (18)

can be reformulated as the variational problem

§Z(y™") =0, (19)
where the minimum of functional
Z(y®") = | Ayl (20)

is sought with || - ||z2 being the L? norm over domain
t € [0,T], defined by the usual scalar product

T
g) = / F(Hg(dt

The solution of (18) gives the global minimum of (20),
therefore the uniqueness of the solutions of (18) and
(19) would result the equivalence of these two problems.
Assuming equivalence between (10) and (18), (19) can be
given as

(21)

E

52

k=1

m m
S'yr—> Q"Pypp,1—> R"Pyi .,

p=1 p=1

:0’

L2

(22)
where the scalar product is now defined on ¢ € (-1, 1].

This numerical method, discretizes the monodromy opera-
tor via the approximation of the solution segment y~"7 by
its piece-wise (element-wise) Lagrange interpolant. There-
fore, the approximation of the elements read as

()= Z¢j(€)

k = —EK +1,—-EK + 2,...,E, where yx; = y&({;)
and ¢;(¢) are the Lagrange base polynomials. The node

Yk,j» (23)
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