ScienceDirect

Available online at www.sciencedirect.com

IFAC “*ic

CONFERENCE PAPER ARCHIVE

IFAC-PapersOnLine 48-7 (2015) 132—-138

Towards Applying Logico-numerical
Control to Dynamically Partially
Reconfigurable Architectures

Nicolas Berthier * Xin An** Hervé Marchand *

*INRIA Rennes - Bretagne Atlantique, Rennes, France
** Hefei University of Technology, Hefei, China

Abstract: We investigate the opportunities given by recent developments in the context of
Discrete Controller Synthesis algorithms for infinite, logico-numerical systems. To this end,
we focus on models employed in previous work for the management of dynamically partially
reconfigurable hardware architectures. We extend these models with logico-numerical features to
illustrate new modeling possibilities, and carry out some benchmarks to evaluate the feasibility

of the approach on such models.

© 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Discrete Controller Synthesis, Infinite Systems, Control of Computing, Synchronous
Languages, Hardware Architectures, Dynamically Partially Reconfigurable FPGA

1. INTRODUCTION

Recent proposals by Berthier and Marchand (2014) in the
domain of symbolic Discrete Controller Synthesis (DCS)
techniques have led to the development of a tool capable
of handling logico-numerical systems and properties, i.e.,
involving state variables defined on infinite domains. The
handling of such infinite systems opens the way to new
opportunities for modeling and control, that still need to
be investigated.

We extend real-life models proposed by An et al. (2013a,b)
for the management of Dynamically Partially Reconfig-
urable (DPR) hardware architectures to: (i) assess the
feasibility of the proposal on bigger systems, (ii) perform
some performance evaluations of the new tool ReaX on
realistic models, including for control objectives newly im-
plemented in this tool; and (iii) introduce logico-numerical
features in the model to assess that the approach can still
be applied using models involving quantitative aspects.

DPR Hardware Architectures DPR hardware architec-
tures, typically Field Programmable Gate Arrays (FPGAs)
(Lysaght et al., 2006), have been identified as a promising
solution for the design of energy-efficient embedded systems
(Hinkelmann et al., 2009). However, such solutions have
not been extensively exploited in practice for two main
reasons: 1) the design effort is extremely high and strongly
depends on the available chip and tool versions, and ii)
the simulation process, which is already complex for non-
reconfigurable systems, is prohibitively large for reconfig-
urable architectures. Therefore, new adequate methods
to deal with their correct dynamical reconfiguration are
required to fully exploit their potential.

Dynamical reconfiguration management requires choosing
new configurations depending on the history of events occur-
ring in the system and predictive knowledge about possible
outcomes of reconfigurations. Such decision-making compo-
nent is difficult to design because of the combinatorics of

possible choices, the transversal constraints between them,
and even more, the history aspects. The work we present
advocates the application of DCS techniques to fulfill this
control problem.

Related Works — The reconfiguration management in DPR
technologies is usually addressed by using manual encoding
and analysis techniques that are tedious and error-prone
according to Gohringer et al. (2008). Other existing
approaches dedicated to self-management of adaptive
or reconfigurable systems use heuristics and machine
learning techniques (Sironi et al., 2010; Paulsson et al.,
2006; Jovanovié¢ et al., 2008) for instance. Maggio et al.
(2012) discuss some approaches applying standard control
techniques such as Proportional Integral and Derivative
(PID) controller or Petri nets-based control. The same
kind of control has also been used for processor and
bandwidth allocation in servers (Lu et al., 2002). Eustache
and Diguet (2008) applied close-loop control to select
hardware/software configurations on an FPGA with a
configuration control based on a data-flow model and
diffusion mechanisms. We note that such a solution relies
on heuristics and empirical laws that prevent instability
and select the suitable configurations.

Compared to the above reconfiguration control techniques,
major advantages of the discrete control approach consid-
ered by An et al. (2013a,b) are the enabled formal correct-
ness and guarantees on run-time performance, as well as
the possibility to synthesize the controller automatically.

Outline We first present in Section 2 the modeling for-
malism we use for expressing the reconfiguration problem,
as well as the tools involved in our work. Sections 3 detail
the problem of reconfiguration control for FPGA-based
DPR systems. We expose the modeling and formulation as
a DCS problem, as well as an illustrative logico-numerical
extension of the model in Section 4, and we report on our
performance evaluation experiments in Section 5.

2405-8963 © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2015.06.484

Nicolas Berthier et al. / IFAC-PapersOnLine 48-7 (2015) 132—138 133

2. MODELING FORMALISM AND TOOLS
2.1 Arithmetic Symbolic Transition Systems

The model of Arithmetic Symbolic Transition Systems
(ASTSs) is a transition system with (internal or input)
variables whose domain can be infinite, and composed
of a finite set of symbolic transitions. Each transition
is guarded on the system variables, and has an update
function indicating the variable changes when a transition
is fired. This model allows the representation of infinite
systems whenever the variables take their values in an
infinite domain, while it has a finite structure and offers a
compact way to specify systems handling data.

Let V = (vy,...,v,) be a tuple of variables and D, the
(infinite) domain of v. We note Dy = [],¢(; ,, Dv, the
(infinite) domain of V. v;(V') gives the value of variable v;
in vector V.

Definition 1. (Arithmetic Symbolic Transition System).
An ASTS is a tuple S = (X, I,T, A, Oq) where:

o X = (x1,...,m,) is a vector of state variables ranging
over Dx = Hje[l,n] D,,; and encoding the memory
necessary for describing the system behavior;

o [= (i1,...,0m) is a vector of variables that ranges
over Dy = Hje[l,m] D;;, called input variables;

o T is of the form (x} := T%),,ex, such that, for each
x; € X, the right-hand side T** of the assignment
x :=T% is an expression on X UI. T is called the
transition function of S, and encodes the evolution of
the state variable x;. It characterizes the dynamic of
the system between the current state and the next state
when recetving an input vector.

o A is a predicate with variables in X U I encoding an
assertion on the possible values of the inputs depending
on the current state;

e Og is a predicate with variables in X encoding the set
of initial states.

For technical reasons, we shall assume that A is expressed
in a theory that is closed under quantifier elimination as
for example the Presburger arithmetic.

ASTSs can conveniently be represented as parallel compo-
sitions of Mealy automata with numerical variables and
explicit locations or in its symbolic form.

Let us consider the following example ASTS where X =
(&, 2,0), I = (a,i) with Dx = {F,G} xZxB, Dy =B X Z
&= G if(=FAanz>0),

F o if (§=GAi>42),¢ otherwise
¥ =2r+1if (E=FAanz>0),

i if (£ = GAi <42),x otherwise
o= (E=FAanz>0)V(E=GAi>42)
A&, z,0,a,1) = (E=GA3zx+2i <4l Aa)
Oo({,z,0))=(E=FAz=0)

The corresponding Mealy automaton with explicit locations
(leaving A aside) can be represented as in Figure 1.

T =

Remark 1. Observe that the wariable o is actually an
output of the system, although it belongs to the vector of
state variables. Indeed, we do not distinguish between those
two kinds of variables to keep the ASTS models simple. We

aNz>0/o,x:=2x+1

—

v
i <A2)z =

—aVz<0 i>42/0

z:=0

Fig. 1. Example ASTS as a Mealy automaton.

can characterize output variables as the ones that never
appear in the right hand side of the assignments in T.

Remark 2. We qualify as logico-numerical an ASTS whose
state (and non-output) and input variables are Boolean
variables (B) or numerical variables (typically, R or Z),
i.e., such that X = B* URK UZ* withk+k + k' =n
(and similarly for the input variables). ASTSs with only
Boolean non-output state variables are called finite.

To each ASTS, one can make correspond an Infinite
Transition System (ITS) defined as follows:

Given an ASTS S = (X,I,T, A, ©y), we make correspond
an ITS [S] = (X,Z,Ts, Ag, Xo) where:

e X = Dx is the state space of [S];
e 7 =Dy is the input space of [S];
Ts C X xZ — X is such that
Ts(x,v) = (o)) jenn © Vi € [1,n], 2} :=T% (z,v);
As C X x T is such that
As ={(z,v) € X x T|A(z,v) = true};
e Xy C X is the set of initial states, and is such that
Xo = {z € X|O¢(x) = true}.

The behavior of such a system is as follows. [S] starts
in a state zyp € Ap. Assuming that [S] is in a state
x € X, then upon the reception of an input v € Z such
that (z,v) € Ag, [S] evolves in the state 2’ = Tg(x,v).
We denote XTrace([S]) the set of states that can be
reached in [S]. Given an ASTS S and a predicate ® over
X, we say that S satisfies ® (noted S = ®) whenever
XTrace([S]) C {x € X|P(z) = true}.

Control of an ASTS Assume given a system S and a
predicate ® on S. Our aim is to restrict the behavior
of S by means of control in order to fulfill . We
distinguish between the uncontrollable input variables U
which are defined by the environment, and the controllable
input variables C which are defined/restricted by the
controller of the system. For technical reason, we assume
that the controllable variables are Boolean. Note that
the partitioning of the input variables in S induces a
“partitioning” of the input space in [S], so we have Z = Dy x
De. A controller is then given by a predicate Ag over
X UU UC that constrains the set of admissible (Boolean)
controllable inputs so that the traces of the controlled
system always satisfy ®.

Definition 2. (Discrete Controller Synthesis Problem).
Given an ASTS S = (X, UUC, T, A,O¢) and a predicate ®
over X, solving the discrete controller synthesis problem
is to compute a predicate Ag such that

S = <X7UUC,T,A¢>,@0>): P
and Vv € XUUUC, Ag(v) = A(v).

The general control problem that we want to solve is
undecidable. In (Berthier and Marchand, 2014), we then
used abstract interpretation techniques to ensure, at the
price of some over-approximations, that the computation

Download English Version:

https://daneshyari.com/en/article/709100

Download Persian Version:

https://daneshyari.com/article/709100

Daneshyari.com

https://daneshyari.com/en/article/709100
https://daneshyari.com/article/709100
https://daneshyari.com/

