ScienceDirect

Available online at www.sciencedirect.com

IFAC “*ic

CONFERENCE PAPER ARCHIVE

IFAC-PapersOnLine 48-7 (2015) 139-146

Distributed Execution of Modular Discrete
Controllers for Data Center Management *

Gwenaél Delaval * Soguy Mak-Karé Gueye * Eric Rutten **

* LIG/Université Grenoble Alpes, Grenoble, France, (e-mail:
{gwenael.delaval, soguy-mak-kare.gueyel@inria.fr)
** INRIA, Grenoble, France, (e-mail: eric.rutten@inria.fr)

Abstract:

Complex computing systems are increasingly designed so that they are self-adaptive, and
adopt the autonomic computing approach for their administration. Real systems require the
co-existence of multiple such autonomic management loops. Their uncoordinated execution
can lead to problematic interferences and jeopardize performance as well as consistency. This
is a typical example of the general need for methodological support for the design of well-
coordinated managers, without breaking their natural modularity. We address the problem
with a method stressing modularity, and focusing on the discrete control of the interactions
of managers. This paper focusses on proposals for the distributed execution of modular
controllers, first in synchronized way, and then relaxing this synchronization. We apply and
validate our method on a multiple-loop multi-tier system in a data-center.

© 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Control of computing systems, Discrete Control, Modularity, Distribution

1. INTRODUCTION

Computing systems are more and more required to be
able to adapt their execution and behavior dynamically,
in reaction to changes in their workload, environment, or
application modes. The control of such reconfigurations
in the computing infrastructures is an active research do-
main, with strong impact on application domains such
as embedded systems, Cloud computing or smart envi-
ronments. Typically, in data-center platforms that support
Cloud Computing and web servers, as we consider in the

Ctrl-Green project !, large distributed systems, involving
numerous networked computers require to be controlled
dynamically, in order to answer to varying workloads
while minimizing costs and maintaining Quality of Ser-
vice, with managers for resources, dependability, and en-
ergetic efficiency. Such dynamical management is done in
control loops and called Autonomic Computing [Kephart
and Chess (2003)].

Recently, the design of such Autonomic Computing loops
has been approached under the angle of Control The-
ory [Hellerstein et al. (2004)]; mostly, classical control
techniques are used, to handle quantitative aspects. Other
aspects, more related to logical problems, can be ap-
proached and solved as Control problems of Discrete
Event Systems (DES), using for example Petri net mod-
els [Wang et al. (2010)]. Our work builds upon previ-
ous results on using Discrete Controller Synthesis (DCS)
methods, based upon the programming language and
tool Heptagon/BZR, applied to data center administra-

* This research is partly supported by ANR INFRA (ANR-11-INFR 012
11) under a grant for the project Gtrl-Green.
1 http://www.en.ctrlgreen.org/

tion, especially for the coordination of multiple loops,
multi-tier systems [Delaval et al. (2013a)].

The work presented here aims at obtaining distributed
discrete controllers in this context, motivated as follows:

e the controlled computing systems have a naturally
distributed architecture,

e managing locally monitors informations (sensors)
and reconfiguration actions (actuators) can dramat-
ically reduce communication overhead,

e robustness is improved, in that failure of one of
the distributed modules involves repairing only this
one; failure management can involve reconstructing
the current state of the failed controller.

We approach distribution by exploiting the support of
hierarchy of nodes and modularity in the Heptagon/BZR
language, based on modular DCS and modular code
generation. Our approach involves :

(1) describing local controllers on each site, in the form
of local behaviors and objectives,

(2) modeling the distributed platform, in a global model,
composing the local ones, and a model of the com-
munications between them,

(3) performing modular compilation and DCS on the
whole program / model, which work as a verifica-
tion at the global level,

(4) using the modularly generated executable code for
each site.

We apply and validate our method on a multiple-loop
multi-tier system in a data-center.

2405-8963 © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2015.06.485

140 Gwenaél Delaval et al. / IFAC-PapersOnLine 48-7 (2015) 139—146

2. BACKGROUND

In this section we briefly recall the formal methods and
tools upon which we base our approach, and some pre-
liminary work in the application domain. To build the
Discrete Event System model, we use the Labelled Tran-
sition Systems underlying the reactive languages of the
synchronous approach. They have been used as a ba-
sis for the definition of a Discrete Controller Synthesis
approach [Marchand and Samaan (2000)], adapting the
classical framework of [Ramadge and Wonham (1989)]
to models obtained from synchronous languages. An ad-
vantage of this approach is that it is tool-supported, by
compilers like Heptagon/BZR? and by the DCS tool Si-
gali [Marchand et al. (2000)]. This point is essential in
order to consider effective applications to concrete com-
puting systems, as we aim in this work.

2.1 Reactive languages

Reactive systems are characterized by their continuous
interaction with their environment, reacting to flows of
inputs by producing flows of outputs. They are classi-
cally modeled as transition systems or automata, with
languages like StateCharts [Harel and Naamad (1996)].
We adopt the approach of synchronous languages [Halb-
wachs (1998)], because we then have access to the con-
trol tools used further. The synchronous paradigm re-
fer to the automata parallel composition that we use
in these languages, allowing for clear formal seman-
tics, while supporting modelling asynchronous compu-
tations [Halbwachs and Baghdadi (2002)]: actions can be
asynchronously started, and their completion is waited
for, without blocking other activity continuing in paral-
lel. The Heptagon/BZR language [Delaval et al. (2013b)]
supports programming of mixed synchronous data-flow
equations and automata, called Mode Automata [Maran-
inchi and Rémond (2003)], with parallel and hierarchical
composition. The basic behavior is that at each reaction
step, values in the input flows are used, as well as local
and memory values, in order to compute the next state
and the values of the output flows for that step. Inside the
nodes, this is expressed as a set of equations defining, for
each output and local, the value of the flow, in terms of an
expression on other flows, possibly using local flows and
state values from past steps.

Figure 1(a,b) shows a small Heptagon/BZR program. The
node delayable programs the control of a task, which
can either be idle, waiting or active. When it is in the
initial Idle state, the occurrence of the true value on
input r requests the starting of the task. Another input
¢ can either allow the activation, or temporarily block
the request and make the automaton go to a waiting
state. Input e notifies termination. The outputs represent,
resp., a: activity of the task, and s: triggering the concrete
task start in the system’s APIL Such automata and data-
flow reactive nodes can be reused by instantiation, and
composed in parallel (noted ";") and in a hierarchical way,
as illustrated in the body of the node in Figure 1(c), with
two instances of the delayable node. They run in parallel,
in a synchronous way: one global step corresponds to one
local step for every node.

2 http://bzr.inria. fr

2.2 Discrete Controller Synthesis (DCS)

Among the methods of design and validation, the con-
troller synthesis is one of the most attractive. It helps
refine an incomplete specification in order to achieve a
certain goal such as the satisfaction of a property not yet
checked with the original system. DCS, computes a con-
trol logic by construction. It is based on formal methods
for the synthesis of a controller enforcing properties on a
system to be controlled. It requires a model of the behav-
ior of the system to be controlled and a specification of
properties to achieve. The latter are expressed in terms of
control objectives, such as invariance. The model system
formally described all possible behaviors, the correct and
incorrect behavior regarding the desired properties.

The synchronous langage Heptagon/BZR [Delaval et al.
(2013b)] integrates DCS in their compilation. This langage
allows an easy use of DCS by introducing the notion of
contract in a modeling system. the contract is described
declaratively and consists of three statements: assume,
enforce and with. The contract contains properties that
the functioning of system must meet. These properties
are declared as control objectives in the enforce state-
ment. When the model that describes the dynamics of
the system does not meet the properties, Heptagon/BZR
generates a control logic that enforces the latter when con-
trollable inputs are defined in the model. The latter inputs
are declared as local variables in the with statement of
the contract. The generated control logic determines the
values to assign to the controllable variables in order to
restrain the modelled behaviors to satisfy the properties.
Relevant properties on the environment are declared in
the assume statement of the contract. This is taken into
account during the synthesis of the control logic.

Figure 1(c) shows an example of contract coordinating
two instances of the delayable node of Figure 1(a). The
twotasks node has a with part declaring controllable
variables ¢; and cp, and the enforce part asserts the
property to be enforced by DCS. Here, we want to ensure
that the two tasks running in parallel will not be both
active at the same time: not (a1 and a,). Thus, ¢; and ¢,
will be used by the synthesized controller to delay some
requests, leading automata of tasks to the waiting state
whenever the other task is active.

Heptagon/BZR always generates a maximally permis-
sive solution for a synthesis problem, which is then made
deterministic in order to be executable. In absence of
controllable variables, the program is fully deterministic
and no control can be performed. Then, the synthesis tool
only checks, by model-checking, that the property in the
enforce part is verified by the program.

2.3 Modular Control

Modular DCS consists in taking advantage of the mod-
ular structure of the system to control locally some sub-
parts of this system [Marchand and Samaan (2000)]. The
benefits of this technique is firstly, to allow computing
the controller only once for specific components, inde-
pendently of the context where this component is used,
hence being able to reuse the computed controller in other
contexts. Secondly, as DCS itself is performed on a sub-

Download English Version:

https://daneshyari.com/en/article/709101

Download Persian Version:

https://daneshyari.com/article/709101

Daneshyari.com

https://daneshyari.com/en/article/709101
https://daneshyari.com/article/709101
https://daneshyari.com

