
ScienceDirect
IFAC-PapersOnLine 48-7 (2015) 161–166

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2015.06.488

Thomas Moor et al. / IFAC-PapersOnLine 48-7 (2015) 161–166

© 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Fault-Tolerant Control of Discrete-Event Systems

with Lower-Bound Specifications

Thomas Moor ∗ Klaus Werner Schmidt ∗∗

∗ Lehrstuhl für Regelungstechnik
Friedrich-Alexander Universität Erlangen-Nürnberg, Germany

(e-mail: lrt@fau.de)
∗∗Mechatronics Engineering Department

Çankaya University, Ankara, Turkey
(e-mail: schmidt@cankaya.edu.tr)

Abstract: Fault-tolerant control addresses the control of dynamical systems such that they remain
functional after the occurrence of a fault. To allow the controller to compensate for a fault, the system
must exhibit certain redundancies. Alternatively, one may relax performance requirements for the closed-
loop behaviour after the occurrence of a fault. To achieve fault tolerance for a hierarchical control
architecture, a combination of both options appears to be advisable: on each individual level of the
hierarchy, the controller may compensate the fault as far as possible, and then pass on responsibility
to the next upper level. This approach, when further elaborated for discrete-event systems represented
by formal languages, turns out to impose a hard lower-bound inclusion specification on the closed-loop
behaviour. The present paper discusses the corresponding synthesis problem and presents a solution.

Keywords: Discrete-event systems, supervisory control, fault-tolerant control, hierarchical control.

1. INTRODUCTION

The aim of fault-tolerant control is the continuation of the
system operation in case of a fault occurrence. Hereby, it is
possible to make use of system redundancies or to allow a
degradation of the system performance after encountering a
fault. In this paper, the stated options are interpreted in the
context of a hierarchical control architecture. We argue that, for
each level of the hierarchy, a controller should use redundancies
to compensate the effects of the fault whenever possible. When
compensation becomes impossible, the fault should be made
explicit for compensation by the next higher level, and so forth.

For discrete-event systems represented by formal languages,
the described strategy can be formalised as a supervisory con-
trol problem with a hard lower-bound inclusion specification
(such as the fault-free behaviour) and an upper-bound inclusion
specification, that can be relaxed if otherwise no solution exists
(in case of uncontrollable behaviour after a fault). This contrasts
the well studied problem with a hard upper bound and the op-
tion to relax the lower bound. We note that the idea of relaxing
the upper bound is solved by Lafortune and Chen (1990) for
the prefix-closed case using the infimal closed controllable su-
perlanguage. The authors also remark that for the general case
of non-closed languages the infimum fails to be controllable.
However, in the present paper, we are interested in non-closed
languages for the specific situation of fault-tolerent control and
propose a non-infimal but sensible solution for the problem at
hand. Our approach retains regularity and we indicate how it
can be implemented for finite automata representations.

Several approaches for fault-tolerance are proposed in the exist-
ing discrete-event systems literature, and we give selected refer-
ences relevant to the present paper. Paoli and Lafortune (2005);
Paoli et al. (2011) consider fault detection by a diagnoser and

switching to a different supervisor for each fault before the
desired system behaviour is violated. In (Wen et al., 2008) it
is proposed that the system behaviour shall converge to the
nominal system behaviour after a fault occurrence, whereas Ku-
mar and Takai (2012) determine necessary and sufficient condi-
tions for controller reconfiguration in the case of faults. Fault-
accommodating models are used in Wittmann et al. (2013) to
represent the fault and to develop a fault-hiding control archi-
tecture similar to the well established approach for continuous
systems. The computation of supremal fault-tolerant sublan-
guages is suggested by Sülek and Schmidt (2013) for systems
where certain events can not longer occur. Sülek and Schmidt
(2014) propose a method for converging to a desired behaviour
under fault. It is common to all of the above approaches that
one needs to explicitly provide a formal representation of some
desirable (but potentially degraded) behaviour that is to be
achieved after a fault occurrence. In the present contribution,
we propose a systematic way to derive this design parame-
ter from the nominal specification and a fault-accommodating
plant model. Motivated by hierarchical control architectures,
our controller indicates any effects of the fault that it cannot
compensate by a distinguished event.

The paper is organised as follows. In Section 2, we provide
the relevant notation. Section 3 discusses the classical supervi-
sory control method. Section 4 illustrates fault-accommodating
models by example and points out limitations of this approach.
The main idea and method of relaxing the upper-bound speci-
fication language for fault tolerance is developed in Section 5
and applied to an example in Section 6.

2. PRELIMINARIES AND NOTATION

Let Σ be a finite alphabet, i.e., a finite set of symbolsσ ∈ Σ. The
Kleene-closure Σ∗ is the set of finite strings s = σ1σ2 · · ·σn,

Proceedings of the 5th IFAC Workshop on
Dependable Control of Discrete Systems
May 27-29, 2015. Cancun, Mexico

Copyright © 2015 IFAC 161

Fault-Tolerant Control of Discrete-Event Systems

with Lower-Bound Specifications

Thomas Moor ∗ Klaus Werner Schmidt ∗∗

∗ Lehrstuhl für Regelungstechnik
Friedrich-Alexander Universität Erlangen-Nürnberg, Germany

(e-mail: lrt@fau.de)
∗∗Mechatronics Engineering Department

Çankaya University, Ankara, Turkey
(e-mail: schmidt@cankaya.edu.tr)

Abstract: Fault-tolerant control addresses the control of dynamical systems such that they remain
functional after the occurrence of a fault. To allow the controller to compensate for a fault, the system
must exhibit certain redundancies. Alternatively, one may relax performance requirements for the closed-
loop behaviour after the occurrence of a fault. To achieve fault tolerance for a hierarchical control
architecture, a combination of both options appears to be advisable: on each individual level of the
hierarchy, the controller may compensate the fault as far as possible, and then pass on responsibility
to the next upper level. This approach, when further elaborated for discrete-event systems represented
by formal languages, turns out to impose a hard lower-bound inclusion specification on the closed-loop
behaviour. The present paper discusses the corresponding synthesis problem and presents a solution.

Keywords: Discrete-event systems, supervisory control, fault-tolerant control, hierarchical control.

1. INTRODUCTION

The aim of fault-tolerant control is the continuation of the
system operation in case of a fault occurrence. Hereby, it is
possible to make use of system redundancies or to allow a
degradation of the system performance after encountering a
fault. In this paper, the stated options are interpreted in the
context of a hierarchical control architecture. We argue that, for
each level of the hierarchy, a controller should use redundancies
to compensate the effects of the fault whenever possible. When
compensation becomes impossible, the fault should be made
explicit for compensation by the next higher level, and so forth.

For discrete-event systems represented by formal languages,
the described strategy can be formalised as a supervisory con-
trol problem with a hard lower-bound inclusion specification
(such as the fault-free behaviour) and an upper-bound inclusion
specification, that can be relaxed if otherwise no solution exists
(in case of uncontrollable behaviour after a fault). This contrasts
the well studied problem with a hard upper bound and the op-
tion to relax the lower bound. We note that the idea of relaxing
the upper bound is solved by Lafortune and Chen (1990) for
the prefix-closed case using the infimal closed controllable su-
perlanguage. The authors also remark that for the general case
of non-closed languages the infimum fails to be controllable.
However, in the present paper, we are interested in non-closed
languages for the specific situation of fault-tolerent control and
propose a non-infimal but sensible solution for the problem at
hand. Our approach retains regularity and we indicate how it
can be implemented for finite automata representations.

Several approaches for fault-tolerance are proposed in the exist-
ing discrete-event systems literature, and we give selected refer-
ences relevant to the present paper. Paoli and Lafortune (2005);
Paoli et al. (2011) consider fault detection by a diagnoser and

switching to a different supervisor for each fault before the
desired system behaviour is violated. In (Wen et al., 2008) it
is proposed that the system behaviour shall converge to the
nominal system behaviour after a fault occurrence, whereas Ku-
mar and Takai (2012) determine necessary and sufficient condi-
tions for controller reconfiguration in the case of faults. Fault-
accommodating models are used in Wittmann et al. (2013) to
represent the fault and to develop a fault-hiding control archi-
tecture similar to the well established approach for continuous
systems. The computation of supremal fault-tolerant sublan-
guages is suggested by Sülek and Schmidt (2013) for systems
where certain events can not longer occur. Sülek and Schmidt
(2014) propose a method for converging to a desired behaviour
under fault. It is common to all of the above approaches that
one needs to explicitly provide a formal representation of some
desirable (but potentially degraded) behaviour that is to be
achieved after a fault occurrence. In the present contribution,
we propose a systematic way to derive this design parame-
ter from the nominal specification and a fault-accommodating
plant model. Motivated by hierarchical control architectures,
our controller indicates any effects of the fault that it cannot
compensate by a distinguished event.

The paper is organised as follows. In Section 2, we provide
the relevant notation. Section 3 discusses the classical supervi-
sory control method. Section 4 illustrates fault-accommodating
models by example and points out limitations of this approach.
The main idea and method of relaxing the upper-bound speci-
fication language for fault tolerance is developed in Section 5
and applied to an example in Section 6.

2. PRELIMINARIES AND NOTATION

Let Σ be a finite alphabet, i.e., a finite set of symbolsσ ∈ Σ. The
Kleene-closure Σ∗ is the set of finite strings s = σ1σ2 · · ·σn,

Proceedings of the 5th IFAC Workshop on
Dependable Control of Discrete Systems
May 27-29, 2015. Cancun, Mexico

Copyright © 2015 IFAC 161

Fault-Tolerant Control of Discrete-Event Systems

with Lower-Bound Specifications

Thomas Moor ∗ Klaus Werner Schmidt ∗∗

∗ Lehrstuhl für Regelungstechnik
Friedrich-Alexander Universität Erlangen-Nürnberg, Germany

(e-mail: lrt@fau.de)
∗∗Mechatronics Engineering Department

Çankaya University, Ankara, Turkey
(e-mail: schmidt@cankaya.edu.tr)

Abstract: Fault-tolerant control addresses the control of dynamical systems such that they remain
functional after the occurrence of a fault. To allow the controller to compensate for a fault, the system
must exhibit certain redundancies. Alternatively, one may relax performance requirements for the closed-
loop behaviour after the occurrence of a fault. To achieve fault tolerance for a hierarchical control
architecture, a combination of both options appears to be advisable: on each individual level of the
hierarchy, the controller may compensate the fault as far as possible, and then pass on responsibility
to the next upper level. This approach, when further elaborated for discrete-event systems represented
by formal languages, turns out to impose a hard lower-bound inclusion specification on the closed-loop
behaviour. The present paper discusses the corresponding synthesis problem and presents a solution.

Keywords: Discrete-event systems, supervisory control, fault-tolerant control, hierarchical control.

1. INTRODUCTION

The aim of fault-tolerant control is the continuation of the
system operation in case of a fault occurrence. Hereby, it is
possible to make use of system redundancies or to allow a
degradation of the system performance after encountering a
fault. In this paper, the stated options are interpreted in the
context of a hierarchical control architecture. We argue that, for
each level of the hierarchy, a controller should use redundancies
to compensate the effects of the fault whenever possible. When
compensation becomes impossible, the fault should be made
explicit for compensation by the next higher level, and so forth.

For discrete-event systems represented by formal languages,
the described strategy can be formalised as a supervisory con-
trol problem with a hard lower-bound inclusion specification
(such as the fault-free behaviour) and an upper-bound inclusion
specification, that can be relaxed if otherwise no solution exists
(in case of uncontrollable behaviour after a fault). This contrasts
the well studied problem with a hard upper bound and the op-
tion to relax the lower bound. We note that the idea of relaxing
the upper bound is solved by Lafortune and Chen (1990) for
the prefix-closed case using the infimal closed controllable su-
perlanguage. The authors also remark that for the general case
of non-closed languages the infimum fails to be controllable.
However, in the present paper, we are interested in non-closed
languages for the specific situation of fault-tolerent control and
propose a non-infimal but sensible solution for the problem at
hand. Our approach retains regularity and we indicate how it
can be implemented for finite automata representations.

Several approaches for fault-tolerance are proposed in the exist-
ing discrete-event systems literature, and we give selected refer-
ences relevant to the present paper. Paoli and Lafortune (2005);
Paoli et al. (2011) consider fault detection by a diagnoser and

switching to a different supervisor for each fault before the
desired system behaviour is violated. In (Wen et al., 2008) it
is proposed that the system behaviour shall converge to the
nominal system behaviour after a fault occurrence, whereas Ku-
mar and Takai (2012) determine necessary and sufficient condi-
tions for controller reconfiguration in the case of faults. Fault-
accommodating models are used in Wittmann et al. (2013) to
represent the fault and to develop a fault-hiding control archi-
tecture similar to the well established approach for continuous
systems. The computation of supremal fault-tolerant sublan-
guages is suggested by Sülek and Schmidt (2013) for systems
where certain events can not longer occur. Sülek and Schmidt
(2014) propose a method for converging to a desired behaviour
under fault. It is common to all of the above approaches that
one needs to explicitly provide a formal representation of some
desirable (but potentially degraded) behaviour that is to be
achieved after a fault occurrence. In the present contribution,
we propose a systematic way to derive this design parame-
ter from the nominal specification and a fault-accommodating
plant model. Motivated by hierarchical control architectures,
our controller indicates any effects of the fault that it cannot
compensate by a distinguished event.

The paper is organised as follows. In Section 2, we provide
the relevant notation. Section 3 discusses the classical supervi-
sory control method. Section 4 illustrates fault-accommodating
models by example and points out limitations of this approach.
The main idea and method of relaxing the upper-bound speci-
fication language for fault tolerance is developed in Section 5
and applied to an example in Section 6.

2. PRELIMINARIES AND NOTATION

Let Σ be a finite alphabet, i.e., a finite set of symbolsσ ∈ Σ. The
Kleene-closure Σ∗ is the set of finite strings s = σ1σ2 · · ·σn,

Proceedings of the 5th IFAC Workshop on
Dependable Control of Discrete Systems
May 27-29, 2015. Cancun, Mexico

Copyright © 2015 IFAC 161

Fault-Tolerant Control of Discrete-Event Systems

with Lower-Bound Specifications

Thomas Moor ∗ Klaus Werner Schmidt ∗∗

∗ Lehrstuhl für Regelungstechnik
Friedrich-Alexander Universität Erlangen-Nürnberg, Germany

(e-mail: lrt@fau.de)
∗∗Mechatronics Engineering Department

Çankaya University, Ankara, Turkey
(e-mail: schmidt@cankaya.edu.tr)

Abstract: Fault-tolerant control addresses the control of dynamical systems such that they remain
functional after the occurrence of a fault. To allow the controller to compensate for a fault, the system
must exhibit certain redundancies. Alternatively, one may relax performance requirements for the closed-
loop behaviour after the occurrence of a fault. To achieve fault tolerance for a hierarchical control
architecture, a combination of both options appears to be advisable: on each individual level of the
hierarchy, the controller may compensate the fault as far as possible, and then pass on responsibility
to the next upper level. This approach, when further elaborated for discrete-event systems represented
by formal languages, turns out to impose a hard lower-bound inclusion specification on the closed-loop
behaviour. The present paper discusses the corresponding synthesis problem and presents a solution.

Keywords: Discrete-event systems, supervisory control, fault-tolerant control, hierarchical control.

1. INTRODUCTION

The aim of fault-tolerant control is the continuation of the
system operation in case of a fault occurrence. Hereby, it is
possible to make use of system redundancies or to allow a
degradation of the system performance after encountering a
fault. In this paper, the stated options are interpreted in the
context of a hierarchical control architecture. We argue that, for
each level of the hierarchy, a controller should use redundancies
to compensate the effects of the fault whenever possible. When
compensation becomes impossible, the fault should be made
explicit for compensation by the next higher level, and so forth.

For discrete-event systems represented by formal languages,
the described strategy can be formalised as a supervisory con-
trol problem with a hard lower-bound inclusion specification
(such as the fault-free behaviour) and an upper-bound inclusion
specification, that can be relaxed if otherwise no solution exists
(in case of uncontrollable behaviour after a fault). This contrasts
the well studied problem with a hard upper bound and the op-
tion to relax the lower bound. We note that the idea of relaxing
the upper bound is solved by Lafortune and Chen (1990) for
the prefix-closed case using the infimal closed controllable su-
perlanguage. The authors also remark that for the general case
of non-closed languages the infimum fails to be controllable.
However, in the present paper, we are interested in non-closed
languages for the specific situation of fault-tolerent control and
propose a non-infimal but sensible solution for the problem at
hand. Our approach retains regularity and we indicate how it
can be implemented for finite automata representations.

Several approaches for fault-tolerance are proposed in the exist-
ing discrete-event systems literature, and we give selected refer-
ences relevant to the present paper. Paoli and Lafortune (2005);
Paoli et al. (2011) consider fault detection by a diagnoser and

switching to a different supervisor for each fault before the
desired system behaviour is violated. In (Wen et al., 2008) it
is proposed that the system behaviour shall converge to the
nominal system behaviour after a fault occurrence, whereas Ku-
mar and Takai (2012) determine necessary and sufficient condi-
tions for controller reconfiguration in the case of faults. Fault-
accommodating models are used in Wittmann et al. (2013) to
represent the fault and to develop a fault-hiding control archi-
tecture similar to the well established approach for continuous
systems. The computation of supremal fault-tolerant sublan-
guages is suggested by Sülek and Schmidt (2013) for systems
where certain events can not longer occur. Sülek and Schmidt
(2014) propose a method for converging to a desired behaviour
under fault. It is common to all of the above approaches that
one needs to explicitly provide a formal representation of some
desirable (but potentially degraded) behaviour that is to be
achieved after a fault occurrence. In the present contribution,
we propose a systematic way to derive this design parame-
ter from the nominal specification and a fault-accommodating
plant model. Motivated by hierarchical control architectures,
our controller indicates any effects of the fault that it cannot
compensate by a distinguished event.

The paper is organised as follows. In Section 2, we provide
the relevant notation. Section 3 discusses the classical supervi-
sory control method. Section 4 illustrates fault-accommodating
models by example and points out limitations of this approach.
The main idea and method of relaxing the upper-bound speci-
fication language for fault tolerance is developed in Section 5
and applied to an example in Section 6.

2. PRELIMINARIES AND NOTATION

Let Σ be a finite alphabet, i.e., a finite set of symbolsσ ∈ Σ. The
Kleene-closure Σ∗ is the set of finite strings s = σ1σ2 · · ·σn,

Proceedings of the 5th IFAC Workshop on
Dependable Control of Discrete Systems
May 27-29, 2015. Cancun, Mexico

Copyright © 2015 IFAC 161

162 Thomas Moor et al. / IFAC-PapersOnLine 48-7 (2015) 161–166

n ∈ �, σi ∈ Σ, and the empty string ǫ ∈ Σ∗ , ǫ � Σ. The length
of a string s ∈ Σ∗ is denoted |s| ∈ �0, with |ǫ| = 0. If, for two
strings s, r ∈ Σ∗, there exists t ∈ Σ∗ such that s = rt, we say r
is a prefix of s, and write r ≤ s; if in addition r � s, we say r
is a strict prefix of s and write r < s. The prefix of s ∈ Σ∗ with
length n ∈ �0, n ≤ |s|, is denoted pren s. In particular, pre0 s = ǫ
and pre|s| s = s. If, for two strings s, t ∈ Σ∗, there exists r ∈ Σ∗

such that s = rt, we say t is a suffix of s. The suffix of a string
s ∈ Σ∗ obtained by deleting the prefix of length n, n ≤ |s|, is
denoted sufn s; i.e., s = (pren s)(sufn s).

A formal language (or short a language) over Σ is a subset
L ⊆ Σ∗ . The prefix of a language L ⊆ Σ∗ is defined by
pre L :={r ∈ Σ∗ | ∃ s ∈ L : r ≤ s}. A language L is closed if
L = pre L. A language K is relatively closed w.r.t. L if K =
(pre K)∩L. The prefix operator distributes over arbitrary unions
of languages. However, for the intersection of two languages L
and H, we have pre (L ∩ H) ⊆ (pre L) ∩ (pre H). If equality
holds, L and H are said to be non-conflicting.

For two languages K, M ⊆ Σ
∗
, K is said to converge to M,

denoted by M ⇐ K, if there is a non-negative integer n such
that for each s ∈ K, there exists an i ≤ n such that sufi s ∈ M.
For two languages N, K ⊆ Σ

∗
, let K/N :={ t | ∃ s ∈ N : st ∈ K }.

Then, K is said to converge to M after N if M ⇐ K/N (also
referred to as conditional convergence).

For the observable events Σo ⊆ Σ, the natural projection
po : Σ

∗
→ Σ

∗
o is defined iteratively: (1) let poǫ := ǫ; (2) for

s ∈ Σ∗ , σ ∈ Σ, let po(sσ) :=(pos)σ if σ ∈ Σo, or, if σ � Σo,
let po(sσ) := pos. The set-valued inverse p−1

o of po is defined
by p−1

o (r) :={s ∈ Σ
∗
| po(s) = r } for r ∈ Σ

∗
o. When applied

to languages, the projection distributes over unions, and the
inverse projection distributes over unions and intersections. The
prefix commutes with projection and inverse projection.

Given two languages L, K ⊆ Σ∗ , and a set of uncontrollable
events Σuc ⊆ Σ, we say K is controllable w.r.t. L, if (pre K)Σuc ∩
(pre L) ⊆ pre K. Controllability is retained under union.

An automaton is a tuple G = (Q, Σ, δ, qo, Qm), with state
set Q, initial state qo ∈ Q, marked states Qm ⊆ Q, and the
partial transition function δ : Q × Σ → Q with its common
extension to the domain Q × Σ∗ . We denote the generated
language L(G) :={s ∈ Σ∗ | δ(qo, s)! } and the marked language
Lm(G) :={s ∈ Σ∗ | δ(qo, s) ∈ Qm }.

Given a language, define the equivalence relation [≡L] on Σ∗

by s′ [≡L] s′′ if and only if (∀ t ∈ Σ
∗

)[s′t ∈ L ↔ s′′t ∈ L].
Then there exists a state minimal automata representation of L
with the equivalence classs of [≡L] as state set. If the latter is
finite, L is called regular.

3. SUPERVISORY CONTROL

We give a concise review of the basic control problem intro-
duced by Ramadge and Wonham (1987, 1989), in a variation
that turns out convenient for the present paper.

Given an alphabet Σ, consider a language L ⊆ Σ∗ to represent
the plant with local behaviour pre L (set of all event sequences
that can be generated as time passes) and accepted behaviour L
(to indicate task completion).

For the purpose of control, the alphabet is partitioned in con-
trollable events and uncontrollable events, i.e., Σ = Σc ∪̇Σuc. In
the original literature, the controller is represented as a causal

feedback map f : pre L → Γ with the set of control-patterns
Γ :={γ |Σuc ⊆ γ ⊆ Σ}. In this paper, we represent f as a language
H and impose three requirements to obtain a setting equivalent
to non-blocking supervisory control from the cited literature 1 .

Definition 1. Given Σ = Σc ∪̇ Σuc, a language H ⊆ Σ
∗ is an

admissible controller for the plant L ⊆ Σ
∗
, if

(H0) H is closed,

(H1) H is controllable w.r.t. L, and

(H2) L and H are non-conflicting. �

For the commonly studied control problem, we consider a plant
L ⊆ Σ∗ and lower- and upper language inclusion specifications
A ⊆ Σ

∗
and E ⊆ Σ

∗
, in order to ask for an admissible controller

H, such that the accepted closed-loop behaviour K = L ∩ H
satisfies the closed-loop requirement A ⊆ K ⊆ E.

Definition 2. Given Σ = Σc ∪̇ Σuc, the control problem under
consideration is parametrised by languages ∅ � A ⊆ E ⊆ L ⊆
Σ
∗. A controller H ⊆ Σ∗ solves the problem, if it is admissible

to the plant L and if in addition

(H3) A ⊆ L ∩ H ⊆ E . �

Except for differences in notation, a constructive solution has
been presented by Ramadge and Wonham (1987, 1989). It is
based on two technical results. First, it is observed that a lan-
guage K can be obtained as the closed-loop behaviour K = L ∩
H with some admissible controller H if and only if K is itself
controllable and relatively closed w.r.t. L. Second, controllabil-
ity and relative closedness are retained under arbitrary union.
Thus, given the upper bound E, there exists a unique supremal
subset that is controllable and relatively closed:

K↑ := sup{K ⊆ E |K is cntrl. and rel. closed w.r.t. L } . (1)

In particular, H := pre K↑ is admissible and we have L ∩ H =
K↑ ⊆ E. If K↑ happens to also satisfy the lower bound
specification A ⊆ K↑, then H solves the control problem. If,
on the other hand, K↑ does not satisfy the inclusion A ⊆ K↑,
then neither does any other achievable closed-loop behaviour
and, thus, the control problem has no solution. If the parameters
A ⊆ E ⊆ L are regular, then so is K↑, and an automaton
representation can be computed in polynomial time 2 . Thus, for
practical problems, one can first compute a representation of K↑

and then test for A ⊆ K↑.

4. EXAMPLE

We provide a simple example to illustrate the well-known re-
sults presented so far and we utilise the example to outline how
supervisory control is applied to hierarchical control architec-
tures and how one may address fault tolerance in this context.

Consider a processing machine that interacts with its envi-
ronment by receiving a workpiece, processing the workpiece,
returning the workpiece, and so forth. At a suitable level of ab-
straction, the machine is represented by the automaton defined
in Fig. 1, referring to the events g (get a workpiece), a (use tool
A for processing), b (use tool B for processing), p (progress
increment), d (processing complete), and x (workpiece exits

1 In the original literature, the plant is represented by an automaton, and, thus,

can itself be blocking. When using a single language to represent the plant,

blocking can be modelled by a distinguished event.
2 More precisely, the complexity is O(n2m2), where n and m denote the state

counts of automata representations of L and E, respectively.

DCDS 2015
May 27-29, 2015. Cancun, Mexico

162

Download English Version:

https://daneshyari.com/en/article/709104

Download Persian Version:

https://daneshyari.com/article/709104

Daneshyari.com

https://daneshyari.com/en/article/709104
https://daneshyari.com/article/709104
https://daneshyari.com

