
Deterioration model filtering by Gibbs

algorithm and RUL estimation

Khanh Le Son, Anne Barros, Mitra Fouladirad
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Abstract: Nowadays, prognosis of system lifetime is a basic requirement for condition-
based maintenance in many application domains where safety, reliability, and availability are
considered of first importance. One of the prognosis aims is the prediction of remaining useful
life of a component or a system. This latter is modeled based on the different deterioration
model, probabilistic or non-probabilistic models. In this paper a probabilistic approach for the
remaining useful life estimation is proposed.

Keywords: Gamma process; deterioration model; Gibbs sampling; RUL estimation; Prognosis.

1. INTRODUCTION

The research on prognostic and remaining useful life
(RUL) assessment has improved in recent years. In prac-
tical applications, a mission is required to estimate RUL
based on the degradation measures. These measures often
provide the information such as the failure time data,
failure sensors measurements to assess the reliability of
systems. The degradation phenomenon can be modelled
by many approaches and the stochastic modelling is one
of them. In many cases the systems has a monotone
gradually deterioration. As example of such systems we
can consider the deterioration due to an accumulation of
damage in a mechanical system or the deterioration due
to defective products in case of a production line or due
to corrosion/erosion in a structural system. In these cases
the deterioration can be modelled by a monotone increas-
ing stochastic process. A well known monotone increasing
stochastic process is the Gamma process. Van Noortwijk
[2009] surveys the application of Gamma processes in
degradation modelling and presents its characteristics. As
the paths of the Gamma process are discontinuous it can
be thought as the accumulation of an infinite number of
small shocks. This interpretation gives credence to the
model since it is often how the degradation occurs. Fur-
thermore, the gamma process allows feasible mathematical
developments. Gamma process is largely applied on the re-
liability systems (eg. Lawless and Crowder [2004], Singpur-
walla [1997]), such as finding the first hitting times model
by a stochastic process researching a boundary in Lee
and Whitmore [2006], Schirru et al. [2010] uses Gamma
processes for filtering and prediction of the time profile of
a monotonic health factor given irregularly sampled noisy
data, Park and Padgett [2005] construct the accelerated
degradation models for failure based on the geometric
Brownian motion or gamma process.

In this paper, the degradation data obtained by operating
sensors measurements are modelled by a stochastic process
in the order to calculate the system reliability. Based
on a non-homogeneous Gamma process and Gaussian
noise, the degradation phenomenon can be explained on

the operational data of system. From the degradation
indicators obtained by analyzing the operational data, the
non-homogeneous Gamma process with noise considers a
degradation model researching a failure boundary, thus the
RUL of system can be estimated as the during from the
last observed time to the failure time. An advantage of a
non-homogeneous Gamma process is that it can model a
non linear tendendency if the deterioration.

For the deterioration model, the main idea has the root
from the degradation indicator obtained from the 2008
Prognostic Health Management Challenge data and ex-
plored in LeSon et al. [2010]. The trend of this indicator
can be expressed by a stochastic process however with a
large noise, the problem leads us to filter this indicator
by a stochastic process with a gaussian noise, a non-
homogeneous gamma process is used in this case. Hereby,
a filtration based on Gibbs algorithm is used to model
this indicator and to find the hidden degradation states
of gamma process. Afterward, a probability distribution is
associated to the RUL.

The remainder of paper is organized as follows. Section 2
presents the deterioration model using a non-homogeneous
gamma process with gaussian noise and how to filter the
hidden degradation states and to estimate the remaining
useful life. The impact of the observations vectors size on
the RUL estimation is studied the sections 3 and 4 and
some numerical examples is shown in the section 4. Finally,
the conclusions of the results as well as the furthers works
are given in the section 5.

2. DETERIORATION MODELLING AND RUL
ESTIMATION

2.1 Deterioration model

The system state at time t can be summarized by a
scalar random ageing variable. Denote by X(t) the system
state at time t which is monotone non-decreasing. As it
is mentioned in Van Noortwijk [2009] its seems sensible
to associate a gamma distribution to X(t). Suppose that
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X(t) has a gamma distribution with a scale parameter
β > 0 and shape function v(t) = αtb which is a non-
decreasing, right continuous, real-valued function for t > 0
with α > 0 and an additive parameter b,X(t) ∼ Γ(v(t), β).
The probability density function is given by:

f(x|v, β) =
βv

Γ(v)
xv−1exp{−βx}I[0,+∞[(x),

where Γ(v) =
∫∞

z=0 z
v−1e−zdz is the Euler gamma function

and I[a,b](x) = 1 if x ∈ [a, b] and I[a,b](x) = 0 otherwise.
The gamma process with shape function v(t) > 0 and scale
parameter β has the following properties:

• X(0) = 0,
• X(s)−X(t) ∼ Γ(v(s) − v(t), β) for all s > t ≥ 0,
• X(t) has independent increments.

Denote by Yj = Y (tj), j = 1, ..., n the degradation
indicators observed at inspection times 0 < t1 < ... < tn,
and Xj is the non-observable state at time tj modelled
by a non-homogeneous gamma process, thus the relation
between Xj and Yj can be expressed as follows:

Yj = f(Xj , ǫj) = Xj + ǫj

where ǫj are independent gaussian random variables with
standard deviation σj and mean equal to zero and it can
be also expressed as a function of Xj and Yj as follows:
ǫj = g(Xj, Yj) = Yj −Xj .

For an accurate prediction or efficient maintenance plan-
ning it is necessary to estimate the non-observable state
of the system. In this purpose we should evaluate the hid-
den degradation states vector X = (X1, ..., Xn) from the
observations Y = (Y1, ..., Yn) by the following conditional
density:

µX/Y(x1, ..., xn) =
µX,Y(x1, ..., xn)∫

...
∫
µX,Y(x1, ..., xn)dx1...dxn

(1)

The density µX,Y(x1, ..., xn) can be deduced as follows:

µX,Y(x1, ..., xn) =Ce−βxn

n∏
j=1

(xj − xj−1)
α(tbj−tbj−1)−1

exp(−
g2(xj , Yj)

2σ2
i

)|g′(xj , Yj)| (2)

where C is a cosntant and g′(., y) = ∂g(.,y)
∂y . Hence, the

conditional density of the hidden degradation states from
the observations can be rewritten by:

µX/Y(x1, ..., xn) =K1e
−βxn

n∏
j=1

(xj − xj−1)
α(tbj−tbj−1)−1

exp(−
g2(xj , Yj)

2σ2
i

)|g′(xj , Yj)| (3)

where K1 is the coefficient defined as follows:

1

K1
=

∫
...

∫
e−βxn

n∏
j=1

(xj − xj−1)
α(tbj−tbj−1)−1

exp(−
g2(xj , Yj)

2σ2
)|g′(xj , Yj)|dx1...dxn (4)

Because of the presence of large number of integrals in
equation (4) it is very difficult to calculate the coefficient
K1. To bypass this problem the Gibbs sampler algorithm
is proposed to estimate the conditional density µX/Y.
This algorithm is based on the conditional densities for
each the component Xj of X given by knowing the other
components:

• For j = 1,

µX/Y(x1/x2, ..., xn) =

K2,1x
α(tb1)−1
1 (xj − xj−1)

α(tbj−tbj−1)−1

e
−

g2(X1,Y1)

2σ2
1 |g′(x1, Y1)|1(0<x1<x2) (5)

• For 2 ≤ j ≤ n− 1,

µX/Y(xj/x1, ..., xj−1, xj+1, ..., xn) =

K2,j(xj − xj−1)
α(tbj−tbj−1)−1(xj+1 − xj)

α(tbj+1−tbj)−1

e(−
g2(xj,Yj )

2σ2 )|g′(xj , Yj)|1(xj−1<xj<xj+1) (6)

• For j = n

µX/Y(xn/x1, ..., xn−1) =

K2,ne
−βxn(xn − xn−1)

α(tbn−tbn−1)−1

e−
g2(xn,Yn)

2σ2 |g′(xn, Yn)|1(xn−1<xn) (7)

The Gibbs sampler algorithm is presented more in detail
in section 2.2.

2.2 Filtering of the hidden degradation states

Gibbs sampler Casella and George [1992], Tierney [1994],
is a MCMC algorithm used for generating random vari-
ables from a (marginal) distribution without having to
calculate the density by using elementary properties of
Markov chains. In the Bayesian framework, the Gibbs
sampler is mainly used to generate posterior distributions,
whereas for the classical statistic problems its major use
is for the calculation of the likelihood function and char-
acteristics of the likelihood estimators. In this study, an
ergodic Markov chain is generated whose invariant law is
the distribution to estimate µX/Y. The outputs of the
Gibbs algorithm are the successive values of a Markov
chain Zq = (Zq

1 , ..., Z
q
n), q ∈ N in which the hidden gamma

degradation states X1, ..., Xn can be approximated. For
the passage of the stage Zq to the stage Zq+1, we draw
lots successively Zq+1

1 , ..., Zq+1
j , ..., Zq+1

n according to the
following probability distribution:

• drawing of lots the value zq+1
1 of Zq+1

1 according to
the law of z1 : µX/Y(z1|z

q
2 , ..., z

q
n)

• drawing of lots the value zq+1
j of Zq+1

j according

to the law of zj : µX/Y(zj |z
q+1
1 , ..., zq+1

j−1 , z
q
j+1, z

q
n),

2 ≤ j ≤ n− 1
• drawing of lots the value zq+1

n of Zq+1
n according to

the law of zn : µX/Y(zn|z
q+1
1 , ..., zq+1

n−1)
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