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Abstract: The paper deals with active fault detection and control for stochastic systems. An
input signal generator for a given detector is designed such that detection and control aims are
pursued. The detection aim is to minimize the probability of a wrong decision at the end of a
finite horizon, and the control aim is to maintain the price of control actions below a given limit
and satisfy some other design requirements. Since the control aim and other design requirements
are enforced as constraints a constrained optimization problem is solved using the open loop
information processing strategy. The proposed approach is applied to active detection of the
stuck air mixing damper of an air handling unit.
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1. INTRODUCTION

The paper is motivated by the steadily increasing demand
for energy-efficient building operation during recent years.
Buildings and its appliances such as air handling units
(AHU) account for 20–40 % of the total final energy
consumption and its amount has been increasing at a
rate 0.5–5 % per annum in developed countries (Perez-
Lombard et al., 2008). Advanced building control and fault
detection techniques have gained a lot of attention in the
last two decades (Wong et al., 2005). Various advanced
fault detection techniques such as neural networks (Lee
et al., 1996), model based techniques (Hyvärinen, 1996)
or expert rules (Trojanova et al., 2009) have been applied
to AHU fault detection. Design of efficient AHU control
algorithms based on distributed model predictive control
(Ma et al., 2011), genetic algorithm (Xu et al., 2009) or
particle swarm optimization algorithm (Kusiak and Li,
2010) was investigated recently.

Although many detection and control problems for AHUs
have already been addressed using various approaches, a
problem of simultaneous active fault detection and control
have not been considered yet. The goal of the paper is
to presents an approach that can be used for solving
simultaneous active fault detection and control while re-
specting additional design constraints. A general formula-
tion of active change detection and control for stochastic
systems (Šimandl and Punčochář, 2009; Šimandl et al.,
2011) provides a theoretical background and a unified
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framework for solving problems with detection and con-
trol aims. Within this unified framework, detection and
control aims are included into a single criterion. As this
approach might not be appropriate with regard to design
requirements, alternative ways of expressing detection and
control aims for multiple linear models were presented
in (Široký et al., 2011). One of these alternative ways
that consists in keeping a detection aim in a criterion and
enforcing a control aim as a constraint is adopted in this
paper, and the problem of active input signal generator
design for a given detector is considered for a special class
of nonlinear systems. The proposed active input signal
generator is subsequently applied for simultaneous active
fault detection and control of an AHU.

2. PROBLEM FORMULATION

The active fault detection and control problem is consid-
ered on a finite time horizon of length F + 1 <∞ and it is
assumed that the observed and controlled system can be
described at each time step k ∈ T = {0, 1, . . . , F} by the
following model

xk+1=Aµk
xk+LBµk

Luk+NBµk
Hk(xk)Nuk+Gµk

wk, (1)

where x̄k = [xT
k µk]T ∈ Rnx+1, uk = [LuT

k
NuT

k ]T ∈ Rnu

and wk ∈ Rnw represent the state, the input and the
state noise, respectively. The part of the state xk ∈ Rnx

is directly measured and used by an active detector and
controller. The last element of the state µk ∈ M = {1, 2}
is not measurable and represents the index of the model
that is in effect at the time step k. The model for µk = 1
represents the fault-free behavior of the system and the
other model represents faulty behavior. In general, the
evolution of the model index µk can be modeled as a
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Markov chain with given transition probabilities. Here it is
assumed that there is no switching between models during
the considered horizon. The part of the input Luk ∈ LUk ⊆
RnL affects the system in a linear way, and the other
part Nuk ∈ NUk ⊆ RnN affects the system through a given
nonlinear matrix-valued function Hk : Rnx → RnH×nN .
The sets LUk and NUk determine admissible inputs and
stem from physical, logical or design considerations. The
state noise wk is the white Gaussian noise with zero mean
value and identity covariance matrix. Further it is assumed
that the pdf of initial state p(x̄0) = p(x0)P (µ0), where
probability P (µ0) is given and p(x0) is Gaussian distribu-
tion with the known mean value x0|−1 and the covariance

matrix P0|−1. Finally, the matrices Aµk
, LBµk

, NBµk
, Gµk

of appropriate dimensions are known for all µk ∈M.

The active fault detector and controller consists of a given
detector and an input signal generator to be designed. At
each time step k ∈ T , it is assumed that the given detector
has the following form

dk = σk(xk0 ,u
k−1
0 ) = arg max

µk∈M
P
(
µk|xk0 ,uk−1

0

)
, (2)

where P (µk|xk0 ,uk−1
0 ) is the conditional probability of

model µk, and dk is the decision that can be regarded
as an estimate of the model valid at the time step k. Since
every possible active detector and controller must be a
causal system, an input signal generator can generally be
described as

uk = γk(Ik0), (3)

where Ik0 = [xk0 ,u
k−1
0 , dk−1

0 ] is the information vector
containing all data received up to the time step k and
the function γk : R(nx+nu)k+nx ×Mk → Rnu describes
the input signal generator at the time step k ∈ T . Note
that the notation xji is used to denote the sequence of
variables or functions from the time step i to the time
step j. If i > j then the sequence is empty, and it is
simply left out from the expression. The aim of the design
is to determine the sequence of functions γF0 such that
the behavior of the active fault detector and controller is
optimal in some sense.

To evaluate the quality of the active fault detector and
controller, a criterion is needed. It is assumed that the
detection and control aims can be expressed using two
independent cost functions Ld

k(µk, dk) : M ×M → R+

and Lc
k (xk,uk) : Rnx+nu → R+, respectively. In this

paper the following aims and corresponding cost functions
are considered. The detection aim is to minimize the
probability of making a wrong decision at the final time
step of the finite horizon. Such an aim can be expressed
by the following detection cost function

Ld
k(µk, dk) =

{
1 if k = F, dF 6= µF ,

0 otherwise.
(4)

The control aim consists in minimizing the price of control
actions measured by the control cost function

Lc
k (xk,uk) =

nu∑
i=1

|pT
k,iuk,i|, (5)

where the subscript i denotes the ith element of a vector,
and pk ∈ Rnu is a given vector of unit prices of individual
inputs.

Since the detection and control cost functions usually
represent two conflicting aims, it is necessary to express
a desired compromise between them (Široký et al., 2011).
Here it is assumed that the overall price of control actions
has to be kept under a given limit while the probability
of making a wrong decision at the final time step is
minimized. Therefore, the goal is to minimize the criterion

J(γF0 ) = E

{
F∑
k=0

Ld
k(µk, dk)

}
, (6)

where E{·} is the expectation operator, and the control
aim is enforced as the constraint

E

{
F∑
k=0

Lc
k (xk,uk)

}
≤ Lc

max, (7)

where Lc
max > 0 is maximum acceptable value of the

control criterion.

Besides the requirements on detection and control, there
may be some additional constraints that are connected
with control aim or other design requirements. Since the
system is described by a stochastic model, it is not possible
to satisfy constraints with certainty except for few special
cases. Therefore, the concepts of expectation constraints
and chance constraints were developed (Ruszczyński and
Prékopa, 2003). The instantaneous linear constraints on
the expected value of the state xk conditioned by the fault-
free behavior are considered in the form

Ck E {xk|µk = 1}+ ck ≤ 0, (8)

where the inequality is taken element-wise, E{·|·} de-
notes the conditional expectation operator, Ck ∈ Rnc×nx

and ck ∈ Rnc are a given matrix and a vector, respectively.
The number of constraints is denoted nc. Failed system can
be constrained as well, however, the goal of active fault
detection is to detect a failure not to handle it. Therefore
only the fault-free behavior is constrained.

3. ACTIVE FAULT DETECTOR AND CONTROLLER
DESIGN

3.1 Linearization by state feedback

The problem of active fault detection and control for multi-
ple linear models was considered in (Blackmore et al., 2008;
Punčochář and Šimandl, 2009), where an upper bound
was used for designing a suboptimal active fault detector
and controller. This upper bound is known as the Bhat-
tacharyya bound and requires to compute the predictive
means and covariance matrices of output (state) which
can be easily done for a linear model. To preserve this
advantageous properties of linear models, the nonlinear
model will be transformed into a linear one by introducing
a virtual input that will replace the nonlinear term in
model (1).

A virtual input Nūk ∈ RnH is defined as
Nūk = Hk (xk) Nuk, (9)

and the corresponding set of admissible virtual inputs can
be obtained as

NŪk(xk)=
{

Nūk :Nūk = Hk (xk) Nuk,
Nuk ∈ NUk

}
. (10)

Using this virtual input, the nonlinear model (1) can be
rewritten as a linear one
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