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Laura Jiménez ∗ C. Verde ∗
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Abstract:
This work deals with the issue of faults classification on line for non linear Hessenberg systems
whose faults are not isolable in steady state conditions. A stepwise procedure is proposed. The
first step consists of the parameters estimation associated with one fault model when abnormal
conditions are detected. As second step, a residual is calculated considering the identified model
together with a periodic auxiliary input to the system. The auxiliary signal added to the system
allows the discrimination of two faults scenarios via features of the residual. The novel procedure
allows: (1) the identification of the fault parameters, if only one occurs and (2) the evaluation
of some boundaries for the faults parameters, if two faults occurs simultaneously. To show the
viability of the method, the leaks diagnosis in pipeline is considered as example.
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1. INTRODUCTION

The fault isolation task for dynamic nonlinear systems
requires observable subsystems sensitive to some faults
and robust to the rest. The solution of this issue is based
on redundant information and the consistence between
normal and actual process behavior obtained by on-line
measurement data (Frank and Ding, 1997).

A general theory for the nonlinear fault detection and
isolation, FDI issues is still missing. There are attempts to
overcome the difficulties using diverse tools and particular
class of nonlinearities, as example (Hammouri et al., 1998),
(De-Persis and Isidori, 2000), (Alcorta Garćıa, 1999),
(Shields et al., 2001). The conditions in these formulations
are difficult to test in complex systems and do not help
to determine, which additional conditions are required to
get a residual. Moreover, it has been recognized that the
structure of a system plays an important role to solve FDI
tasks.

An analytical redundant relation ARR means the exis-
tence of a set of equations to validate the model by process
data and the maximum number of redundant relations
is bounded by the difference between number of model
equations and its unknown variables (Krysander et al.,
2008). To study the diagnosticability of a generic system
without numeric values the structural analysis SA has the
advantage that allows to cope with large scale systems
without numerical values of the parameters (Blanke et al.,
2006).

A framework to study a process described by partial
differential equations, like a transport process, consists to
discretize the space obtaining a Hessenberg model, HM.

⋆ This work was made with financial support of the DGAPA-

PAPIIT-UNAM and CONACyT

An important property of this class of non linear systems
is the uniformly input observability (Bernard et al., 1998);
however this proper could be affected by faults because
the structure of the system is strongly coupled to faults
distribution vector. As consequence, not all fault scenarios
can be detected in a HM.

A diagnosis analysis for a general HM with specific
parameter structures as faults is carried out here using
the SA. It is concluded that one can discriminate between
one fault and multi-fault cases, if a estimated fault model
is used together with auxiliar signals introduced in the
system. Using the frequency spectrum of the residual,
it is selected a feature which allows to distinguish some
fault scenarios. The feature has the advantages that can
be evaluated on line with the cross-correlation between a
periodic auxiliary signal and a residual.

The paper is organized as follows. Section 2 presents the
structural properties of a Hessenberg system HM with the
assumed structure for the faults. Diverse fault scenarios
are studied using SA. Section 3 proposes a scheme to
classify two classes of faults; adding an auxiliary signal of
low frequency to the HM and using a feature to separate
two classes of faults. An illustrative example is presented
in Section 4 and some conclusions and remarks are given
in Section 5.

2. STRUCTURAL ANALYSIS FOR HESSENBERG
FORMS

2.1 Model Structure

Consider the model defined on the domain ℜn with n odd
given by

ẋ = f(x, u, θ), x(0) = x0 u ∈ ℜp

y = h(x) ∈ ℜ2 (1)
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where faults are associated with the parameters vector
θ ∈ ℜn−1 and the structure of the model has the following
properties:

(1) The system is both strictly linked lower and upper
Hessenberg (LH and UH). This means

If j > i + 1,
∂fi(x, u, θ)

∂xj+1
= 0,

∂fi(x, u, θ)

∂xi+1
6= 0

and

If j < i + 1,
∂fi(x, u, θ)

∂xj−1
= 0,

∂fi(x, u, θ)

∂xi−1
6= 0

(2) The output vector is upper and lower measured for
all x. This means

y1 = x1 with x1 6= 0

y2 = xn with xn 6= 0

(3) Each fault induces at most a two changes in vector θ
with the lower structural coupled property:

• For i 6= n odd and j 6= i ∂fi(x,u,θ)
∂θj

= 0, therefore

ẋi = fi(xi−1, xi, xi+1, u, θi) (ci)

• For j even

i > j
∂fj(x, u, θ)

∂θi

= 0

i < j
∂fj(x, u, θ)

∂θi−1
= 0

therefore

ẋj = θj−1fj(xj−1, xj , xj+1, u, θj) (cj)

These means the Jacobian matrix ∂f
∂θ

is formed by
diagonal blocks with the structure

(

× 0
× ×

)

(4) The system is strongly detectable. This means inde-
pendent on the set of admissible u(t), the existence
of fault produces a deviation of the output such that
‖y(t) − y0(t)‖ 6= 0, where y0(t) is the output without
faults (Chen and Patton, 1999).

2.2 Structural analysis

The SA requires the definitions of faults and nodes sets.
For system (1), the set associated with faults is

Θ = {θ0
1 + δθ1, θ

0
2 + δθ2, . . . , θ

0
n−1 + δθn−1} (2)

where δ denotes deviation of the nominal value, the known
variables set is

K = {y1, y2, u1, u2} (3)

the unknown variables set is

X = {x2, x3, ..., xn−1, ẋ1, ẋ2, ...ẋn} (4)

and the constraints set is

C = {c1, ..., cn, d1, ..., dn} = Cs ∪ D (5)

where ci is affected by Θ and the derivative node di ∈ D

ẋi :=
dxi

dt
(di)

The bipartite graph of (1) with variables nodes V = K∪X ,
constraints nodes C and edges set E given by

eij =

{

(ci, vj) if and only if vj appers in ci

0 on the contrary

is denoted G = (C;V, E). In the matrix description an edge
eij is marked by • in row i, column j.

If faults change some members of C, the edges eij asso-
ciated to this subset are sensitive to the faults. Then,
the bipartite graph allows to consider deviation in Θ
as faults. Considering that the over-constrained graph
G+(C+;X+, E+) is the only one with redundant informa-
tion, the matching process to establish relations between
variables and constraints for FDI is carry out only using
V+ and C+ (Blanke et al., 2006).

To determine the ARRs by a graph one matches K+

with constraints C+ in which X+ has been substituted
and the involved constraints are interpreted as functions
which map subsets of K+

in in other subsets of K+
out, where

the path is determined by a concatenation process and the
subsets satisfied

K+
in ∩ K+

out = ∅
According to Verde and Sánchez-Parra (2010)

RGi(Ci;Usi; yi) (6)

is a Redundant Graph if (a) paths between the nodes of
Usi and the target yi are consistence using the constraints
set Ci; and (b) there is a lack of consistency if a fault
is present in any element of the paths. The symbols →
and ← are used in the matrix description for initial and
target nodes respectively and the symbol ⊕ in the row i
and column j means the constraint i is used to determine
variable j.

A RG and its associated residual are obtained in general
without any consideration of the exogenous set. If the
paths of a RG hold for all input u, the graph is called
a uniform redundant graph and the diagnosticability
properties are preserved. Thus, an observer can be de-
signed to reconstruct the faults or estimate the parameters
associated to the faults. On the contrary, a nonuniform
redundant graph demands the selection of auxiliary inputs
to hold the paths.

2.3 Fault Isolability Analysis

For simplicity in the analysis without loss of generality, it
is assumed n = 5 in (1) and the incidence matrix is given
in this case by

y1 x2 x3 x4 y5 ẋ1 ẋ2 ẋ3 ẋ4 ẋ5 u1 u2 δθ1 δθ2 δθ3 δθ4

c1 • • • • •
c2 • • • • • •
c3 • • • • •
c4 • • • • • •
c5 • • • • • •

d1 • •

d2 • •

d3 • •

d4 • •

d5 • •

(7)

Then, |C|=10, |X | = 8, |K| = 4 and max |Θ| = 4. Thus,
exists redundant information in normal conditions and the
assumptions of set Θ determine under which conditions,
faults can be detected, isolated and reconstructed. Four
scenarios are presented.

Partial information for one fault. If there is only one
fault with known θ1 and ẋ = 0, constraint c2 is directly
affected by the unknown parameter δθ2. Thus, if c2 is
used in the matching, diverse redundant graphs can be
achieved. The redundant graph

RG1(C\{c1}; {u2, y2}; y1) (8)

SAFEPROCESS 2012
August 29-31, 2012. Mexico City, Mexico

50



Download English Version:

https://daneshyari.com/en/article/709569

Download Persian Version:

https://daneshyari.com/article/709569

Daneshyari.com

https://daneshyari.com/en/article/709569
https://daneshyari.com/article/709569
https://daneshyari.com

