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Abstract: In this paper we present a method for actuator fault detection and identification in
Lure systems. The Lure plant is controlled by an observer-based feedback tracking controller,
designed for the nominal (fault-free) system. A residual signal is constructed from measurable
estimation errors associated with the nominal observer. Faults are diagnosed by on-line
contrasting the residual signal trajectories against a set of values that the residuals can be
shown to attain under healthy or faulty operation. These values are obtained via set-invariance
analysis of the system closed-loop trajectories.
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1. INTRODUCTION

Fault tolerant control systems combine fault detection and
identification [FDI] and controller reconfiguration prin-
ciples in an integrated methodology aimed at automat-
ically avoiding, or minimising, performance degradation
when faults occur. In this paper we concentrate on the
FDI aspect of the fault tolerant control problem for Lure
type systems and a companion paper submitted to this
conference treats the associated controller reconfiguration
problem [Richter et al., 2012].

Numerous methodologies for FDI have been proposed in
the literature since the introduction of the early techniques
in the 1970s; see, for example, the monographs and surveys
Ding [2008], Isermann [2006], Blanke et al. [2006], Patton
et al. [2000], Basseville and Nikiforov [1993], Venkata-
subramanian et al. [2003]. A well established technique
for model-based FDI relies on analytical redundancy in
the form of dedicated observers. These observers generate
residual variables that act as fault indicators. Research in
the area of observer based FDI has recently focused on
finding an optimal tradeoff between the residual’s sensi-
tivity to fault and the robustness against disturbances by
means of well-established methods in robust control theory
(see, for example, Ding et al. [1993, 2000]; Henry and
Zolghadri [2005]; Zhang and Ding [2008]). It is, however,
worth mentioning that the majority of published work on
FDI deals only with linear systems.

In the framework of linear systems we have recently pro-
posed a new approach for actuator FDI (see, e.g., Ocampo-
Mart́ınez et al. [2008] and Seron et al. [2012]). The novelty
of this approach lies in a new decision criterion for FDI
based on the computation of attractive invariant sets to-
wards which the estimation errors related to each consid-

1 Corresponding author. Email: maria.seron@newcastle.edu.au

ered fault scenario are guaranteed to converge. A key prop-
erty for correct fault diagnosis is then the separation of
the sets that characterise healthy operation from the ones
that characterise faulty operation. Another “set-based”
approach for systems with parametric uncertainty is the
so-called set-membership (also known as error-bounded)
approach. It is a passive robust fault detection approach
that is based on computing explicitly the set of parameters
or states that are consistent with the measurements [Blesa
et al., 2010]. Set-membership fault detection approaches
have been widely discussed in the research community; see,
for example, Watkins and Yurkovich [1996]; Lesecq et al.
[2003]; Ingimundarson et al. [2008]; Puig [2010]. A related
passive robust fault detection approach was proposed for
uncertain nonlinear systems in Wolff et al. [2008].

In this paper, we extend the aforementioned invariant
set-based FDI approach to a class of nonlinear systems,
namely Lure systems. Lure systems, which consist of lin-
ear dynamics with nonlinear internal feedback, are useful
for representing, among others, mechanical systems with
friction. The proposed FDI scheme is schematised in Fig-
ure 1. For our purposes, the Lure plant is controlled by
an observer-based feedback tracking controller, as shown
in the figure, designed for the nominal (fault-free) system.
The structure of this nominal controller is similar to that
proposed in van de Wouw et al. [2008], but suitable mod-
ifications are introduced to include tracking of a bounded
state reference trajectory. For the resulting nominal con-
trolled closed-loop system, we derive sufficient conditions,
different to the ones provided in van de Wouw et al. [2008],
that guarantee boundedness of the closed-loop system
trajectories in the presence of bounded state and mea-
surement disturbances, and asymptotic reference tracking
in the absence of disturbances. These sufficient condi-
tions are obtained by adapting the results of Haimovich
and Seron [2011] to compute invariant sets and ultimate
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Fig. 1. Proposed FDI scheme for controlled Lure systems.

bounds for Lure-type systems. A residual signal r is then
constructed from measurable estimation errors associated
with the nominal observer. Faults are diagnosed by on-line
contrasting the residual signal trajectories against a set of
values that the residuals can be shown to attain under
healthy or faulty operation. These values are obtained by
the computation of invariant “healthy” and “under-fault”
residual sets towards which the residuals are attracted in
finite time and confined thereafter under different actuator
fault situations that can occur in the system. We illustrate
the proposed methodology through an example of a flexible
link robotic arm model used in Böhm et al. [2010].

2. LURE PLANT AND TRACKING CONTROLLER

In this section we present the nominal (fault-free) closed-
loop system consisting of a Lure plant and an observer-
based tracking controller.

The plant is a Lure system having dynamics

ẋ(t) = Ax(t) +Bvϕ(Cvx(t)) +Buc(t) + Ew(t)

y(t) = Cx(t) + η(t)
(1)

where x(t) ∈ R
n is the system state, uc(t) ∈ R

m is
the control input, w(t) ∈ R

r is a process disturbance
bounded as 2 |w(t)| ≤ w̄, t ≥ 0, for some known constant
vector w̄ ∈ R

r, y(t) ∈ R
p is the plant measured output

and η(t) ∈ R
p is a bounded measurement disturbance

satisfying |η(t)| ≤ η̄, t ≥ 0, for some known constant
vector η̄ ∈ R

p. We will assume that the nonlinear function
ϕ : Rs → R

s satisfies

|ϕ(α) − ϕ(β)| ≤ M |α− β| (2)

for all α, β ∈ R
s and some matrix M ∈ R

s×s with
nonnegative entries.

The above system is controlled via the following observer-
based, feedback tracking controller (see Figure 1):

uc(t) = −K[x̂(t)− xref(t)] + uref(t) (3)

˙̂x(t) = Ax̂(t) +Bvϕ(Cvx̂(t) +H [y(t)− Cx̂(t)])

+Buc(t) + L[y(t)− Cx̂(t)] (4)

ẋref(t) = Axref(t) +Bvϕ(Cvxref(t)) +Buref(t) (5)

where x̂(t) ∈ R
n is the state of the Lure-type nominal

observer with dynamics given by (4). The reference sys-

2 Absolute values (or magnitudes in the case of complex entries) and
inequalities of vectors and matrices are considered elementwise.

tem (5) generates a trajectory (uref , xref) that is solution
of the nominal model. These trajectories are designed such
that they are bounded and certain design specifications are
satisfied. In particular, we will assume (for later use) that
constant vectors u0

ref ∈ R
m, uref ∈ R

m exist such that
uref(t) ∈ Uref = {u ∈ R

m : |u− u0
ref | ≤ uref} for all t ≥ 0.

The feedback gain K and the observer gains L and H in
the controller (3)–(5) are design parameters. In particular,
L and K are designed so that the matrices A − LC and
A−BK are Hurwitz (this requires detectability of (A,C)
and stabilisability of (A,B), which will be assumed).

3. CLOSED-LOOP SYSTEM AND INVARIANT SETS

In this section we analyse the nominal closed-loop system
behaviour by studying the dynamics of the state estima-
tion error x̃ and state tracking error e. These errors are
defined as

x̃(t) , x(t)− x̂(t) e(t) , x(t)− xref(t) (6)

and their dynamics are given by 3

˙̃x = (A− LC)x̃+ Ew − Lη +Bvϕ(Cvx)

−Bvϕ(Cvx̂+HCx̃+Hη) (7)

ė = (A−BK)e+BKx̃+ Ew +Bvϕ(Cvx)

−Bvϕ(Cvxref) (8)

Note that in the second equation above we have used
uc = −K(e− x̃) + uref , which follows from (3) and (6).

Let

ξ(t) ,

[
x̃(t)
e(t)

]

(9)

and using δ , Ew − Lη, we define

A ,

[
A− LC 0
BK A− BK

]

, K , [K −K]

Φ(ξ, w, η) ,

[
Bv[ϕ(Cvx)− ϕ(Cvx̂+HCx̃+Hη)] + δ

Bv[ϕ(Cvx) − ϕ(Cvxref)] + Ew

]

We can then write (7)–(8) as

ξ̇ = Aξ +Φ(ξ, w, η) (10)

where A is Hurwitz (by design of L and K, see last
paragraph of Section 2), and, using (2) and the bounds
on the disturbances, the “perturbation” term Φ(ξ, w, η)
can be bounded as

|Φ(ξ, w, η)| ≤

[
|Bv|M |Cv −HC| 0

0 |Bv|M |Cv|

]

︸ ︷︷ ︸

G

|ξ|+

[
|E| |Bv|M |H |+ |L|
|E| 0

] [
w̄
η̄

]

︸ ︷︷ ︸

g

, G|ξ|+ g (11)

To analyse the properties of the above closed-loop dynam-
ics, we will apply the following result.

Theorem 3.1. (Boundedness and Set Invariance). Consider
the system

ξ̇(t) = Aξ(t) + φ(t)

3 In the sequel, we remove in some equations the dependence of the
variables on continuous-time t when clear from the context.
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