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Abstract: Diagnosis is the process of identifying or determining the nature and root cause of
a failure, problem, or disease from the symptoms arising from selected measurements, checks or
tests. The different facets of this problem and the wide spectrum of classes of systems make the
diagnosis problem interesting to several communities and call for bridging several technologies.
This paper provides a comprehensive picture of the different facets of diagnosis, and exemplifies
how different technologies can be synergically integrated to provide better solutions for fault

management problems.
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1. INTRODUCTION

The goal of diagnosis is to identify the possible causes ex-
plaining a set of observed symptoms. A set of concomitant
tasks contribute to this goal and the following three tasks
are commonly identified:

o fault detection, which aims at discriminating normal
system states from abnormal ones, i.e. states which
result from the presence of a fault,

e fault isolation, also called fault localization, whose
goal is to point at the faulty components of the
system,

e fault identification, whose output is the type of fault
and possibly the model of the system under this fault.

In front of the diversity of systems and different views
of the above problems, several scientific communities ad-
dress these tasks and contribute with a large spectrum
of methods. The Signal Processing, Control and Artificial
Intelligence (AI) communities are on the front.

Diagnosis works from the signals that permit efficient fault
detection towards the upper levels of supervision that call
for qualitative interpretations.

Signal processing provides specific contributions in the
form of statistic algorithms for detecting changes in sig-
nals, hence detecting faults. This track can be exemplified
by the reference books and papers by Basseville (1988);
Basseville and Nikiforov (1993); Basseville et al. (2004);
Fillatre and Nikiforov (2007); Fouladirad et al. (2008).

Interfaces between continuous signals and their abstract
interpretations, in symbolic or event-based form, imple-
ment the qualitative interpretations of the signals that are
required for supervision. To do that, discrete formalisms
borrowed from Artificial Intelligence find a natural link
with continuous models from the Control community.
These two communities have their own model based di-
agnosis track :
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e the FDI (Fault Detection and Isolation) track, whose
foundations are based on engineering disciplines, such
as control theory and statistical decision making,

e the DX (Diagnosis) track, whose foundations are de-
rived from the fields of logic, combinatorial optimiza-
tion, search algorithms and complexity analysis.

In the last decade, there has been a growing number of
researchers in both communities, who tried to understand
and incorporate approaches from the two parallel research
fields to build better, more robust and effective diagnostic
systems.

Data-driven diagnosis approaches based on machine learn-
ing techniques are also present in both the Control and
AT communities and complement synergically with model-
based approaches to provide solutions to a variety of di-
agnostic problems where difficulty arises from the scarce
nature of the instrumentation or, conversely, from the mas-
sive amounts of data to be interpreted for the emergence
of hidden knowledge.

Other bridges can be found when considering that diagno-
sis is not a goal per se but a component in fault manage-
ment architectures. It takes part in the solutions produced
for tasks such as design, failure-mode-and-effects analysis,
sensor placement, on-board recovery, condition monitor-
ing, maintenance, repair and therapy planning, prognosis.
The contribution of diagnosis in such architectures means
close links with decision tasks such as control and planning
and calls for innovative integrations.

In this paper, different facets of diagnosis investigated
in the Control or the AI fields are discussed. Some are
compared, in particular the concepts and results of the
FDI and DX tracks are put in correspondence and the
lessons learned from this comparative analysis are pointed.
Some are discussed in relation with other technologies
that participate to provide solutions for fault management
problems. Signal Processing methods are used by these
communities at several level but these remain out of the
scope of this paper.
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This paper is organized as follows. Section 2 first presents a
brief overview of the approaches proposed by both the FDI
and the DX communities on the other hand. Section 2.3
presents the results of a comparative analysis of concepts
and techniques used in both communities and section 3 is
concerned with the works that integrate techniques from
both sides.

2. DX AND FDI MODEL BASED DIAGNOSIS
BRIDGE

The FDI and DX streams both approach the diagnosis
problem from a system point of view, hence resulting in
large overlaps, including the name of the tracks: Model
Based Diagnosis (MBD).

The diagnosis principles are the same, although each
community has developed its own concepts and methods,
guided by different modelling paradigms. FDI relies on
analytical models, linear algebra, and non linear system
theory whereas DX takes its bases in logic formalisms. In
the 2000s, catalyzed by the BRIDGE group Bridging Al
and Control Engineering model based diagnosis approaches
! within the Network of Excellence MONET II 2 and its
French counterpart, the IMALATA group Intégration de
Méthodes Alliant Automatique and IA supported by GDR
MACS 3, GDR I3 #, as well as AFIA 5 there were more
and more researchers who tried to understand and syner-
gically integrate methods from the two tracks to propose
more efficient diagnostic solutions. This collaboration has
led to several events :

e a BRIDGE Workshop in 2001 in the framework of
DX’01, 12th International workshop on Principles
of Diagnosis, Sansicario, Via Lattea, Italy, 5-9 Mars
2001 6.

e the co-location of the two main events of the FDI and
the DX communities, namely the Symposium IFAC
Safeprocess 2003 and the International Workshop
Principles of Diagnosis DX 2003, in Washington DC
(USA) in June 2003 with a BRIDGE Workshop in the
form of a join day.

This events were followed by the publication of a special
issue of the IEEE SMC Transactions, Part B, on the topic
Diagnosis of Complex Systems: Bridging the methodologies
of the FDI and DX Communities in 2004 by Biswas
et al. (2004). The Bridge track was launched and is still
active today. Lets’s mention the two invited sessions ATl
methods for Model-based Diagnosis and Bridge between
Control Theory and AI methods for Model-based Diagnosis
, recently organized in the framework of the 7th TFAC
Symposium on Fault Detection, Supervision and Safety of
Technical Processes Safeprocess’09, Barcelona, Spain, 30
July-3 August 2009 7.

The next subsections first summarize the foundations of
the FDI and DX methods, then proceed to a comparative

http://monet.aber.ac.uk:8080/monet/monetinfo/monetbridge.htm
http://monet.aber.ac.uk:8080/monet/index.html
http://www.univ-valenciennes.fr/GDR-MACS/
http://www.irit.fr/GDR-I3/

http://www.afia.asso.fr/

http://www.di.unito.it/ dx01

http://safeprocess09.upc.es/
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analysis that allows us to draw some practical assessments
in the form of lessons learned.

2.1 Brief overview of FDI approaches

The detection and diagnosis methods of the FDI com-
munauty rely on behavioral models that establish the
constraints between system inputs and outputs, i.e. the set
of measurable variables Z, as well as the internal states,
i.e. the set of unknown variables X. The variables z € Z
et the variables € X are functions of time. The typical
model may be formulated in the temporal domain, then
known as a state-space model of the form:

BM : dx/dt = f(x(t),u(t), ) (1)
OM : y(t) = g(x(t), u(t), ).

where z(t) € " is the state vector, u(t) € R™ is
the input vector and y(t) € R" is the output vector.
BM is the behavioral model and OM is the observation
model. The whole model is noted SM (z, z). The equations
of SM(z,z) may be associated to components but this
information is not represented explicitly. The models can
also be formulated in the frequency domain (transfer
functions in the linear case).

Models are used in three families of methods:

e the methods based on parameter estimation that
focus on the value of parameters as representing
physical features of the system

e the methods based on state estimation that rely on
the estimation of unknown variables

e the methods based on the parity space that rely on
the elimination of unknown variables

The books (Gertler (1998), Blanke et al. (2003), Dubuisson
(2001), Patton et al. (1989)) provide excellent surveys,
which cite the original papers that the reader is encouraged
to consult. The equivalence between observers, parity and

paramater estimation has been proved in the linear case
(Patton and Chen (1991)).

The concept central to FDI methods is the concept of
residual and one of the main problems is to generate
residuals. Let’s consider the model SM(z,z) of a system
in the form (1) 8. SM(z,z) is said to be consistent
with an observed trajectory z, or simply consistent with
measurements z, if there exists a trajectory of x such that
the equations of SM(z,x) are satisfied.

Definition 1. (Residual generator for SM(z,x)). A system
that takes as input a sub-set of measured variables Z C Z
and generates as output a scalar r,is a residual genera-
tor for the model SM(z,z) if for all z consistent with
SM(z,x), we have lim;_, o, r(t) = 0.

When the system model is consistent with measurements,
the residuals tend to zero as t tends to infinity, otherwise
some residuals may be different from zero. The residuals
are often optimized to be robust to disturbancies (Qiu
and Gertler (1993)) and to take into account uncertainties
(Adrot et al. (1999)). The evaluation of residuals and

8 The model may also include algebraic equations.



Download English Version:

https://daneshyari.com/en/article/709620

Download Persian Version:

https://daneshyari.com/article/709620

Daneshyari.com


https://daneshyari.com/en/article/709620
https://daneshyari.com/article/709620
https://daneshyari.com

