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Abstract: A new fault identification method for batch processes based on Least Squares
Support Vector Machines (LS-SVMs; Suykens et al. [2002]) is proposed. Fault detection and fault
diagnosis of batch processes is a difficult issue due to their dynamic nature. Principal Component
Analysis (PCA)-based techniques have become popular for data-driven fault detection. While
improvements have been made in handling dynamics and non-linearities, correct fault diagnosis
of the process disturbance remains a difficult issue. In this work, a new data-driven diagnosis
technique is developed using an LS-SVMs based statistical classifier. When a fault is detected,
a small window of pretreated data is sent to the classifier to identify the fault. The proposed
approach is validated on data generated with an expanded version of the Pensim simulator
[Birol et al., 2002]. The simulated data contains faults from six different classes. The obtained
results provide a proof of concept of the proposed technique and demonstrate the importance

of appropriate data pretreatment.
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1. INTRODUCTION

In comparison to continuous processes, batch processes
have a lower capital cost and a higher flexibility to produce
multiple products or grades. Therefore, batch processes
play an important role in the chemical and biochemical
industries for the production of high added value products
(e.g. pharmaceuticals, food products, polymers, semicon-
ductors). A batch process can be prone to a number of
process disturbances such as impurities in the raw mate-
rials, fouling of heat exchangers, sensor failures, plugged
pipes, etc. The dynamic nature of batch processes presents
a challenging problem for fault detection and diagnosis.

Today’s process plants dispose of large historical databases
containing the frequent measurements of online sensors
on hundreds of variables. Statistical Process Monitoring
(SPM) aims to exploit these existing databases for process
monitoring, fault detection and fault diagnosis, and there-
fore has a tremendous potential for industrial applications.
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Most recent research within the field of SPM has been
devoted to fault detection and identification using tech-
niques based on Principal Component Analysis (PCA).
While progress has been made in improving fault detection
performance by including process dynamics (e.g., batch
dynamic PCA [Chen and Liu, 2002], auto-regressive PCA
[Choi et al., 2008]) or non-linear extensions of PCA (e.g.,
kernel PCA [Lee et al., 2004]), correct diagnosis of the
process disturbance remains a difficult issue.

Examining contribution plots, which chart the contribu-
tion of each variable to the out-of-control statistic, is by
far the most popular approach to find the cause of an
alarm signal [Westerhuis et al., 2000]. The generation of
contribution plots requires no prior knowledge about pro-
cess disturbances. However, process knowledge is necessary
for interpreting the contribution pattern and finding the
actual cause.

Cho and Kim [2004] proposed a Fisher Discriminant Anal-
ysis (FDA)-based classifier which provides a more direct
diagnosis. The classifier is trained on historical faulty data
and assigns the cause of a detected fault to the class it
most resembles. The drawback of this method is the need
of a significant amount of historical faulty data as FDA
requires a number of past fault batches greater than the di-
mensionality of the fault data. For example, Cho and Kim
[2004] needed 700 faulty training batches per class in their
case study. As process plants are monitored and controlled
to achieve satisfactory product quality and prevent process
faults, the number of faulty batches available is limited.
Therefore, in most practical cases, pseudo-batches have to
be generated to account for the data insufficiency [Cho and
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Kim, 2005]. The limited availability of faulty batches is an
important consideration for the design of a data-driven
fault diagnosis scheme. Cho [2007] extended the linear
FDA approach to non-linear problems by employing kernel
FDA and reduced the need for pseudo-batch generation.

Recently, Support Vector Machines (SVMs) were utilized
as a learning algorithm for fault classification of continu-
ous processes [Yélamos et al., 2009]. SVMs are based on
statistical learning theory developed by Vapnik [1998] and
have shown to exhibit a large generalization performance,
especially when the number of training samples is small
[Abe, 2005]. This is an important advantage as the avail-
ability of faulty data is a common bottleneck in developing
data-driven diagnosis techniques.

In this paper the application of Least Squares SVMs (LS-
SVMs; [Suykens et al., 2002]) to data-driven fault diagno-
sis of batch processes is explored. As a case study, data
of an expanded version of the Pensim simulator developed
by Birol et al. [2002] is used. First, the basics of PCA and
its application to fault detection in batch processing are
summarized in Section 2. Next, LS-SVMs are briefly intro-
duced with a focus on multi-class problems in Section 3.
The proposed LS-SVMs-based methodology for batch fault
diagnosis is explained in Section 4. Section 5 describes
the case study on which the fault diagnosis method is
validated, followed by a discussion of the obtained results
in Section 6. Finally, conclusions and future research di-
rections are provided in Section 7.

2. PCA-BASED FAULT DETECTION
2.1 PCA for batch data

Industrial data is typically heavily correlated as the mea-
sured variables are connected through physical laws, mass
balances, redundancy of sensors, etc. PCA reduces the
number of measured variables to a smaller number of
uncorrelated variables or scores by exploiting these cor-
relations [Jollife, 1986].

While PCA is applicable to two-dimensional matrices only,
a batch data set is inherently three-dimensional as it
contains I batches of which J variables are measured at
K different time points. Nomikos and MacGregor [1994]
solved this issue by first unfolding the I x J x K batch data
array to a two-dimensional matrix. In this paper, the data
is normalized around the mean trajectory to zero mean
and unit variance and subsequently unfolded using the
variable-wise unfolding method proposed by Wold et al.
[1998]. The K x J measurements of each batch are placed
under each other to obtain an I K x J data matrix X. After
unfolding, each column of the variable-wise unfolded data
matrix X is normalized before applying PCA.

The PCA model approximates X with a lower dimensional
matrix T containing R scores (R < J) for each row of X.
The scores matrix is found by projecting X on a loading
matrix P:

X = TP" (+Ex). (1)
where Ex represents the residuals. The sizes of the ma-
trices T, P, and Ex in Eq. 1 are IK x R, J x R and
IK x J respectively. The R columns of P correspond to
the principal components. The first principal component is
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the direction of maximum variance in the data; subsequent
components explain gradually less variance. When apply-
ing PCA to process data, large variance are assumed to
be important dynamics, while smaller variances represent
noise. The number of principal components R to include
has to be decided by the user.

2.2 Fault detection statistics

In Statistical Process Monitoring, abnormal behavior is
detected by comparing measured process data against a
reference dataset obtained under Normal Operating Con-
ditions (NOC). Each new 1 x J measurement vector x
is projected on P to obtain its 1 x R score vector t; and
1 x J residual vector e,. The current score vector and
residuals are compared to the NOC data by computing
two scalar fault detection statistics. The Hotelling’s 72
statistic monitors the scores and checks if a new observa-
tion projects onto the model plane defined by the loading
matrix P within the limits determined by the NOC data.
The Squared Prediction Error (SPE) statistic monitors
the residuals to detect the occurrence of any abnormal
events that cause new observations to move away from
the model plane. Upper control limits are established for
both statistics based on the reference data set [Nomikos
and MacGregor, 1994].

2.8 Fuault detection versus fault identification

Fault detection statistics only indicate if process behavior
is normal in comparison to the NOC reference data. When
a fault is detected, they provide no information about the
cause of the out-of-control signal. In this work, an LS-SVM
classifier is trained on historical data of past faulty batches
to provide online fault diagnosis.

3. INTRODUCTION TO LS-SVMs

The concept of LS-SVMs and their extension to multi-class
problems is discussed in Section 3.1 and 3.2 respectively.
For more information on LS-SVMs, the interested reader is
referred to the book of Suykens et al. [2002] for a detailed
treatment.

3.1 LS-SVM basics

Consider a dataset consisting of N samples of M-
dimensional input data x; (i = 1...N) belonging to two
classes (Fig. 1). Each sample can be labeled with a scalar
y; € {—1,41} for the positive and the negative class
respectively. In their simplest form, LS-SVMs train a linear
decision function or hyperplane

y=wix+b (2)
to separate the input data, where w is an M-dimensional
vector and b a scalar bias term. For a new data point
Xk, Eq. 2 is evaluated and xj is labeled as the sign of
yr- An infinite number of separating hyperplanes exist.
LS-SVMs seek the hyperplane that maximizes the margin
between the two classes (Fig. 1b). This maximum margin
principle leads to a higher generalization performance,
i.e. an increased correct classification rate of unseen data
points. The four samples lying on the margin in Fig. 1b
are called support vectors.
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