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Abstract:
In this paper, we study cyclic production for throughput optimization in robotic flow-shops. We
are focusing on simple production cycles. Robotic cells can have a linear or a circular layout:
most classical results on linear cells cannot be extended to circular cells, making it difficult to
quantify the potential gain brought by the latter configuration. Moreover, though the problem
of finding the best one part production cycle is polynomial for linear cells, it is NP-hard for
circular cells.
We consider the special case of circular balanced cells. We first consider three basic production
cycles, and focus on one which is specific to circular cells, for which we establish the expression
of the cycle time. Then, we provide a counter-example to a classical conjecture still open in
this configuration. Finally, based on computational experiments, we make a conjecture on the
dominance of a family of cycle, which could lead to a polynomial algorithm for finding the best
1-cycle for circular balanced cells.
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circular layout

1. POSITIONING OF THE PROBLEM

Robotic cells consist in a flowshop where the machines
are served by a robot. Present in many industries, they
are frequently used in semi-conductor manufacturing and
electroplating (Dawande et al., 2007). The model was first
introduced by Asfahl (1985) to describe a production cell
for truck differentials, while Sethi et al. (1992) provided the
first formal study for small dimension cells. The robotic
flow-shop problem for the production of multiple part
types has been proven NP-complete for 3 machines by Hall
et al. (1998).

As robotic cells constitute an adequate environment for
large-scale production of a few different types of products,
the throughput – the number of part produced per time
unit – is a natural measure for their performance.Dawande
et al. (2007) present a survey on throughput optimization
in robotic cells.

1.1 Notations and problem specification

Formally, a robotic cell consists of m machines, denoted
by M1,M2, ...,Mm, and a robot in charge of the handling
of the parts in-between machines. The cell is also equipped
with an input buffer, which provides the parts to be
produced in infinite quantity, and an output buffer, also
of infinite capacity. These buffers are modeled by two
additional machines, respectively M0 and Mm+1. As in a
classical flow-shop, all parts must be processed successively
on machines M1 . . .Mm in that order.

The input of the problem consists of travel times, process-
ing times and loading/unloading times. In the general case,
travel times and processing times are machine-dependent:
δi,j denotes the travel time between machines Mi and
Mj while pi,j represents the processing time of a part j
on machine i. Loading and unloading times are generally
assumed identical and denoted by ε.

However, if the robot travels at a constant speed, with
no acceleration in-between machines, then the only infor-
mation needed for travel times is the time between two
consecutive machines δi. In this case, the travel times are
called additive: this is a fairly common assumption. Addi-
tionally, if the time between any two consecutive machines
is the same (if the machines are regularly disposed), the
cell is called regular. In cases where the cell is used to
group operations of similar length, it is relevant to consider
machine-independent processing times. The cell is then
called balanced.

Note that for a regular balanced cell producing one type
of part, the problem input consists of only 4 numbers, m,
δ, p, ε.

Depending on the type of robot used, the machines and the
input and output stations can be disposed in several ways.
Two main configurations are studied in the literature: on
the one hand, linear or semi-circular layouts (Figure 1(a)),
where the input and output buffers are separated and
located respectively at each end of the line (Crama and
van de Klundert, 1997), and on the other hand, circular
layouts (Figure 1(b)), where the machines are arranged in
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a circle, with the input and output buffers either occupying
the same spot (M0 = Mm+1), or very close (Rajapakshe
et al., 2011; Jung et al., 2015).

This paper focuses on the classical robotic cell model,
which means that the cell is served by a single robot which
can hold a single part at a time, and the machines are
bufferless: as a consequence, a machine cannot be loaded
with a new part until processing is finished and the part
transferred onto the next machine.

We will also assume that parts may stay on a given
machine as long as necessary after processing is finished
(this is referred to as unbounded waiting-times or free-
pickup criterion). Other policies include no-wait (the part
must be retrieved as soon as the processing is finished),
and interval (waiting times are bounded), also called Hoist
Scheduling Problems (HSP).

Out

M1

M2

M3

In

(a) semi-circular layout

M1

M2

M3

In/Out

(b) circular layout

Fig. 1. Three-machine robotic cells

1.2 Identical parts production

In the general case, where multiple part types must be
produced, two types of decisions must be made: sequencing
the parts, and scheduling the robot moves. In the case
where only one type of part is to be produced, the part
sequencing is of course trivial: the problem reduces to
finding an optimal robot move schedule. Brauner (2008)
presents a survey on single part-type production in robotic
cells.

In this case, robot move sequences can be described using
the concept of activities, introduced by Crama and van de
Klundert (1999). Activities are elementary robot moves
defined as such: for i ∈ {0 . . .m}, activity Ai refers to the
following sequence of events:

(1) The robot unloads a part from Mi;
(2) The robot travels to Mi+1;
(3) The robot loads the part onto Mi+1.

1.3 Cyclic programmation

For large-scale production, it is operationally relevant to
prefer a cyclic programmation. This means that the robot
repeats indefinitely the same move sequence, each iteration
leaving the cell in the same state, with the same machines
loaded and the same machines empty. Moreover, cyclic
programmations are dominant (Dawande et al., 2005b),
which means that for any set of parameters, there always
exists an optimal programmation which is cyclic. The
elementary sequence is called a cycle.

One-cycles are particular cycles which produce one part
exactly: during one iteration, exactly one part enters the
cell at M0, and one processed part leaves the cell. More
generally, a k-cycle is a cycle of production of k parts.
One-cycles are easy to describe and enumerate using the
concept of activities, as they are exactly the permutations
of the m+1 activities (Crama and van de Klundert, 1999).
They are also easier to implement operationally.

As a consequence, it is convenient to restrict the possible
move sequences to 1-cycles only. But does this allow to
find an optimal sequence? Sethi et al. (1992) formulate
the 1-cycle conjecture:

Conjecture 1. (1-cycle conjecture Sethi et al. (1992)).
The set of 1-cycles is dominant (for any set of parameters,
there always exists a 1-cycle which is optimal).

Unfortunately, this conjecture has been proven false on the
general case for more than 4 machines (Dawande et al.,
2005a; Brauner and Finke, 2001), meaning that 1-cycles
are not generally optimal. However, it is interesting to
consider their performance compared to general cycles and
their dominance for special cases of robotic cells, as well
as finding the best 1-cycle. In this paper, we are interested
in the last two problems.

1.4 Impact of the layout

The answers to these questions depend on the cell layout.
In fact, although requiring more sophisticated robots,
circular layout can improve the travel time, as the robot
takes the shortest path around the cell. For example, in a
regular balanced cell, travel time between machine Mi and
Mj is δi,j = |i − j|δ, while on a similar cell with circular
layout, it is δi,j = min(|i− j|,m+ 1− |i− j|)δ.
In order to make a decision regarding the layout of
the cell or quantify the potential gain of a circular lay-
out, it is necessary to study the best programmation
for either layout. However, dominant sequences for lin-
ear cells might not be dominant with a circular lay-
out (Geismar et al., 2005). Most studies on circular
cells consider models which relax the blocking constraints
one way or another: robot with swapping ability (Jolai
et al., 2012), dual-gripper robots (Sethi et al., 2001; Jung
et al., 2015; Drobouchevitch et al., 2006), or machine
buffers (Drobouchevitch et al., 2010). On the contrary,
circular classical single gripper cells, studied by (Geismar
et al., 2005; Rajapakshe et al., 2011; Jung et al., 2015) are
not as well understood yet as their linear counterparts.

1-cycle conjecture The 1-cycle conjecture is valid for 2-
machine cells regardless of the layout (Sethi et al., 1992).
For linear layouts, it is valid for 3-machine cells (Crama
and van de Klundert, 1997), and false for 4-machine
cells (Brauner and Finke, 2001). For the special case of reg-
ular balanced cell, it is valid up to 15 machines (Brauner,
2008). However, for circular cells with more than 2 ma-
chines, it is still open, even for the regular balanced case.

In Section 3 we provide a counter-example to the 1-cycle
conjecture for 6-machine regular balanced cells.

Best 1-cycle problem Finding the best 1-cycle is polyno-
mial in linear additive cells: Crama and van de Klundert
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