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Abstract: Hybrid systems that use in their production process both raw materials (manu-
facturing mode), and returned products (remanufacturing mode) are considered. The system
is supposed to be fully flexible and able to share its production time between manufacturing
and remanufacturing. The system performance is evaluated using a piecewise linear function
of serviceable and return inventories. Limited flow rate of returned products results in the
state constraint on the return inventory and imposes additional limitations on the system
feasibility. Such systems, to the best of the authors knowledge, were not previously considered
in the literature. After characterizing manufacturing-remanufacturing strategies analytically, we
propose some heuristics that approximate optimal policies in case of systems without failures,
and then extend them to the case of failure-prone systems. We present the numerical study based
on the solution of Hamilton-Jacobi-Bellman equations, that complements analytical results and
allows to validate the proposed sub-optimal policies.
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1. INTRODUCTION

The integration of reverse logistics into the production en-
vironment is gaining an increasing interest of the research
community over the last decades. Specific activities inher-
ent to remanufacturing (distribution planning, inventory
management, production planning, etc.) were identified
Fleishman et al. (1997), and quantitative approaches to
arising problems were first outlined. Optimization mod-
els for the systems with returned products recovery have
been studied extensively in Kiesmuller and Scherer (2003)
with particular attention paid to production planning and
inventory management. Recently, Kenne et al. (2012) de-
veloped a stochastic dynamic control model in continuous
time to optimize the global performance of the closed-
loop manufacturing system that consists of two machines
working in manufacturing and remanufacturing modes,
respectively.

Various issues relevant to reverse logistics, and the coor-
dination of manufacturing and remanufacturing in partic-
ular, are addressed in the recent book by Gupta (2014).
While using the same facility for both manufacturing and
remanufacturing may seem attractive as it enhances sys-
tem flexibility, it may nevertheless increase the coordina-
tion complexity.

An example of a concrete industrial system that uses the
same production line for both manufacturing and reman-
ufacturing operations can be found in Tang and Teunter
(2006). A case study was performed, with a company
producing car parts, and specifically, a water pump pro-
duction line was analyzed by extending the economic lot

scheduling technique to the case of return. Authors pro-
posed an optimal solution based on a mixed integer-linear
programming technique. In a recent paper by Flapper et al.
(2014), the optimal scheduling for hybrid manufacturing
remanufacturing systems is considered. The production
schedule that minimizes the average discounted long-term
cost was determined using a stochastic steady-state ap-
proach without taking into account the system dynamics.
Dynamics and optimal control of the hybrid systems with
setups was considered in Polotski et al. (2015).

We study in this paper the systems that are fully flex-
ible (no setup needed for switching from one mode to
another), but have an upper bound on their integrated
(manufacturing plus remanufacturing) production capac-
ity. We essentially follow the line of analysis proposed in
Srivatsan and Dallery (1998) and Presman et al. (1998)
for a flexible machine producing (simultaneously) two part
types. In our case, however, the flexibility of the machine
serves to combine two production processes instead of two
parts produced. Such hybrid systems with the explicit
upper bound on the production capacity have been rarely
considered in the literature, and none of those considered
has taken the production dynamics into account.

After formulating the problem in section 2, we explore
in section 3 the simplest situation, when the production
process is deterministic (no machine failures are consid-
ered). We classify the systems according to the parameter
combination related to the system feasibility. In section 4
we consider the failure-prone systems and develop the opti-
mality conditions in the form of Hamilton-Jacobi-Bellman
(HJB) equations. Next, we propose some heuristics for a

IFAC Conference on Manufacturing Modelling,
Management and Control
June 28-30, 2016. Troyes, France

Copyright © 2016 IFAC 295

Production Policy Optimization in Flexible
Manufacturing-Remanufacturing Systems

Vladimir Polotski1, Jean-Pierre Kenne1 and Ali Gharbi2

1Department of Mechanical Engineering,
2Department of Automated Production Engineering,

Ecole de Technologie Superieure, 1100 Notre Dame West, Montreal,
Quebec, H3C 1K3

(email: vladimir.polotski, jean-pierre.kenne, ali.gharbi@etsmtl.ca)

Abstract: Hybrid systems that use in their production process both raw materials (manu-
facturing mode), and returned products (remanufacturing mode) are considered. The system
is supposed to be fully flexible and able to share its production time between manufacturing
and remanufacturing. The system performance is evaluated using a piecewise linear function
of serviceable and return inventories. Limited flow rate of returned products results in the
state constraint on the return inventory and imposes additional limitations on the system
feasibility. Such systems, to the best of the authors knowledge, were not previously considered
in the literature. After characterizing manufacturing-remanufacturing strategies analytically, we
propose some heuristics that approximate optimal policies in case of systems without failures,
and then extend them to the case of failure-prone systems. We present the numerical study based
on the solution of Hamilton-Jacobi-Bellman equations, that complements analytical results and
allows to validate the proposed sub-optimal policies.

Keywords: Manufacturing, remanufacturing, feasibility, failures, optimal policy.

1. INTRODUCTION

The integration of reverse logistics into the production en-
vironment is gaining an increasing interest of the research
community over the last decades. Specific activities inher-
ent to remanufacturing (distribution planning, inventory
management, production planning, etc.) were identified
Fleishman et al. (1997), and quantitative approaches to
arising problems were first outlined. Optimization mod-
els for the systems with returned products recovery have
been studied extensively in Kiesmuller and Scherer (2003)
with particular attention paid to production planning and
inventory management. Recently, Kenne et al. (2012) de-
veloped a stochastic dynamic control model in continuous
time to optimize the global performance of the closed-
loop manufacturing system that consists of two machines
working in manufacturing and remanufacturing modes,
respectively.

Various issues relevant to reverse logistics, and the coor-
dination of manufacturing and remanufacturing in partic-
ular, are addressed in the recent book by Gupta (2014).
While using the same facility for both manufacturing and
remanufacturing may seem attractive as it enhances sys-
tem flexibility, it may nevertheless increase the coordina-
tion complexity.

An example of a concrete industrial system that uses the
same production line for both manufacturing and reman-
ufacturing operations can be found in Tang and Teunter
(2006). A case study was performed, with a company
producing car parts, and specifically, a water pump pro-
duction line was analyzed by extending the economic lot

scheduling technique to the case of return. Authors pro-
posed an optimal solution based on a mixed integer-linear
programming technique. In a recent paper by Flapper et al.
(2014), the optimal scheduling for hybrid manufacturing
remanufacturing systems is considered. The production
schedule that minimizes the average discounted long-term
cost was determined using a stochastic steady-state ap-
proach without taking into account the system dynamics.
Dynamics and optimal control of the hybrid systems with
setups was considered in Polotski et al. (2015).

We study in this paper the systems that are fully flex-
ible (no setup needed for switching from one mode to
another), but have an upper bound on their integrated
(manufacturing plus remanufacturing) production capac-
ity. We essentially follow the line of analysis proposed in
Srivatsan and Dallery (1998) and Presman et al. (1998)
for a flexible machine producing (simultaneously) two part
types. In our case, however, the flexibility of the machine
serves to combine two production processes instead of two
parts produced. Such hybrid systems with the explicit
upper bound on the production capacity have been rarely
considered in the literature, and none of those considered
has taken the production dynamics into account.

After formulating the problem in section 2, we explore
in section 3 the simplest situation, when the production
process is deterministic (no machine failures are consid-
ered). We classify the systems according to the parameter
combination related to the system feasibility. In section 4
we consider the failure-prone systems and develop the opti-
mality conditions in the form of Hamilton-Jacobi-Bellman
(HJB) equations. Next, we propose some heuristics for a

IFAC Conference on Manufacturing Modelling,
Management and Control
June 28-30, 2016. Troyes, France

Copyright © 2016 IFAC 295

Production Policy Optimization in Flexible
Manufacturing-Remanufacturing Systems

Vladimir Polotski1, Jean-Pierre Kenne1 and Ali Gharbi2

1Department of Mechanical Engineering,
2Department of Automated Production Engineering,

Ecole de Technologie Superieure, 1100 Notre Dame West, Montreal,
Quebec, H3C 1K3

(email: vladimir.polotski, jean-pierre.kenne, ali.gharbi@etsmtl.ca)

Abstract: Hybrid systems that use in their production process both raw materials (manu-
facturing mode), and returned products (remanufacturing mode) are considered. The system
is supposed to be fully flexible and able to share its production time between manufacturing
and remanufacturing. The system performance is evaluated using a piecewise linear function
of serviceable and return inventories. Limited flow rate of returned products results in the
state constraint on the return inventory and imposes additional limitations on the system
feasibility. Such systems, to the best of the authors knowledge, were not previously considered
in the literature. After characterizing manufacturing-remanufacturing strategies analytically, we
propose some heuristics that approximate optimal policies in case of systems without failures,
and then extend them to the case of failure-prone systems. We present the numerical study based
on the solution of Hamilton-Jacobi-Bellman equations, that complements analytical results and
allows to validate the proposed sub-optimal policies.

Keywords: Manufacturing, remanufacturing, feasibility, failures, optimal policy.

1. INTRODUCTION

The integration of reverse logistics into the production en-
vironment is gaining an increasing interest of the research
community over the last decades. Specific activities inher-
ent to remanufacturing (distribution planning, inventory
management, production planning, etc.) were identified
Fleishman et al. (1997), and quantitative approaches to
arising problems were first outlined. Optimization mod-
els for the systems with returned products recovery have
been studied extensively in Kiesmuller and Scherer (2003)
with particular attention paid to production planning and
inventory management. Recently, Kenne et al. (2012) de-
veloped a stochastic dynamic control model in continuous
time to optimize the global performance of the closed-
loop manufacturing system that consists of two machines
working in manufacturing and remanufacturing modes,
respectively.

Various issues relevant to reverse logistics, and the coor-
dination of manufacturing and remanufacturing in partic-
ular, are addressed in the recent book by Gupta (2014).
While using the same facility for both manufacturing and
remanufacturing may seem attractive as it enhances sys-
tem flexibility, it may nevertheless increase the coordina-
tion complexity.

An example of a concrete industrial system that uses the
same production line for both manufacturing and reman-
ufacturing operations can be found in Tang and Teunter
(2006). A case study was performed, with a company
producing car parts, and specifically, a water pump pro-
duction line was analyzed by extending the economic lot

scheduling technique to the case of return. Authors pro-
posed an optimal solution based on a mixed integer-linear
programming technique. In a recent paper by Flapper et al.
(2014), the optimal scheduling for hybrid manufacturing
remanufacturing systems is considered. The production
schedule that minimizes the average discounted long-term
cost was determined using a stochastic steady-state ap-
proach without taking into account the system dynamics.
Dynamics and optimal control of the hybrid systems with
setups was considered in Polotski et al. (2015).

We study in this paper the systems that are fully flex-
ible (no setup needed for switching from one mode to
another), but have an upper bound on their integrated
(manufacturing plus remanufacturing) production capac-
ity. We essentially follow the line of analysis proposed in
Srivatsan and Dallery (1998) and Presman et al. (1998)
for a flexible machine producing (simultaneously) two part
types. In our case, however, the flexibility of the machine
serves to combine two production processes instead of two
parts produced. Such hybrid systems with the explicit
upper bound on the production capacity have been rarely
considered in the literature, and none of those considered
has taken the production dynamics into account.

After formulating the problem in section 2, we explore
in section 3 the simplest situation, when the production
process is deterministic (no machine failures are consid-
ered). We classify the systems according to the parameter
combination related to the system feasibility. In section 4
we consider the failure-prone systems and develop the opti-
mality conditions in the form of Hamilton-Jacobi-Bellman
(HJB) equations. Next, we propose some heuristics for a

IFAC Conference on Manufacturing Modelling,
Management and Control
June 28-30, 2016. Troyes, France

Copyright © 2016 IFAC 295

Production Policy Optimization in Flexible
Manufacturing-Remanufacturing Systems

Vladimir Polotski1, Jean-Pierre Kenne1 and Ali Gharbi2

1Department of Mechanical Engineering,
2Department of Automated Production Engineering,

Ecole de Technologie Superieure, 1100 Notre Dame West, Montreal,
Quebec, H3C 1K3

(email: vladimir.polotski, jean-pierre.kenne, ali.gharbi@etsmtl.ca)

Abstract: Hybrid systems that use in their production process both raw materials (manu-
facturing mode), and returned products (remanufacturing mode) are considered. The system
is supposed to be fully flexible and able to share its production time between manufacturing
and remanufacturing. The system performance is evaluated using a piecewise linear function
of serviceable and return inventories. Limited flow rate of returned products results in the
state constraint on the return inventory and imposes additional limitations on the system
feasibility. Such systems, to the best of the authors knowledge, were not previously considered
in the literature. After characterizing manufacturing-remanufacturing strategies analytically, we
propose some heuristics that approximate optimal policies in case of systems without failures,
and then extend them to the case of failure-prone systems. We present the numerical study based
on the solution of Hamilton-Jacobi-Bellman equations, that complements analytical results and
allows to validate the proposed sub-optimal policies.

Keywords: Manufacturing, remanufacturing, feasibility, failures, optimal policy.

1. INTRODUCTION

The integration of reverse logistics into the production en-
vironment is gaining an increasing interest of the research
community over the last decades. Specific activities inher-
ent to remanufacturing (distribution planning, inventory
management, production planning, etc.) were identified
Fleishman et al. (1997), and quantitative approaches to
arising problems were first outlined. Optimization mod-
els for the systems with returned products recovery have
been studied extensively in Kiesmuller and Scherer (2003)
with particular attention paid to production planning and
inventory management. Recently, Kenne et al. (2012) de-
veloped a stochastic dynamic control model in continuous
time to optimize the global performance of the closed-
loop manufacturing system that consists of two machines
working in manufacturing and remanufacturing modes,
respectively.

Various issues relevant to reverse logistics, and the coor-
dination of manufacturing and remanufacturing in partic-
ular, are addressed in the recent book by Gupta (2014).
While using the same facility for both manufacturing and
remanufacturing may seem attractive as it enhances sys-
tem flexibility, it may nevertheless increase the coordina-
tion complexity.

An example of a concrete industrial system that uses the
same production line for both manufacturing and reman-
ufacturing operations can be found in Tang and Teunter
(2006). A case study was performed, with a company
producing car parts, and specifically, a water pump pro-
duction line was analyzed by extending the economic lot

scheduling technique to the case of return. Authors pro-
posed an optimal solution based on a mixed integer-linear
programming technique. In a recent paper by Flapper et al.
(2014), the optimal scheduling for hybrid manufacturing
remanufacturing systems is considered. The production
schedule that minimizes the average discounted long-term
cost was determined using a stochastic steady-state ap-
proach without taking into account the system dynamics.
Dynamics and optimal control of the hybrid systems with
setups was considered in Polotski et al. (2015).

We study in this paper the systems that are fully flex-
ible (no setup needed for switching from one mode to
another), but have an upper bound on their integrated
(manufacturing plus remanufacturing) production capac-
ity. We essentially follow the line of analysis proposed in
Srivatsan and Dallery (1998) and Presman et al. (1998)
for a flexible machine producing (simultaneously) two part
types. In our case, however, the flexibility of the machine
serves to combine two production processes instead of two
parts produced. Such hybrid systems with the explicit
upper bound on the production capacity have been rarely
considered in the literature, and none of those considered
has taken the production dynamics into account.

After formulating the problem in section 2, we explore
in section 3 the simplest situation, when the production
process is deterministic (no machine failures are consid-
ered). We classify the systems according to the parameter
combination related to the system feasibility. In section 4
we consider the failure-prone systems and develop the opti-
mality conditions in the form of Hamilton-Jacobi-Bellman
(HJB) equations. Next, we propose some heuristics for a

IFAC Conference on Manufacturing Modelling,
Management and Control
June 28-30, 2016. Troyes, France

Copyright © 2016 IFAC 295



296 Vladimir Polotski et al. / IFAC-PapersOnLine 49-12 (2016) 295–300

particular case of rare failures, generalize them to failure-
prone case and study this general case numerically. Our
analysis is focused on the systems with following character-
istics: relatively low return rate, manufacturing capacity
exceeds the demand, backlog is (much) more expensive
than inventory, holding cost of return inventory exceeds
the serviceable inventory cost. Some results for the sys-
tems with different characteristics are briefly presented in
section 5, followed by conclusions.

2. PROBLEM FORMULATION

We consider a hybrid manufacturing/remanufacturing sys-
tem that consists of one flexible machine capable of work-
ing (simultaneously) in two modes: manufacturing mode
(1) and remanufacturing mode (2). In mode (1) the pro-
duction uses raw materials that are supposed to be unlim-
ited, while in mode (2) the production source is the limited
return inventory. The machine is subject to (random)
failures followed by (random) repairs. The times between
failures and the repair times are exponentially distributed
with rates p and r respectively.

The state of the system consists of discrete and continuous
components: discrete state is described with the binary
random variable ξ: ξ = 1 when the machine is operational
and ξ = 0, when it is under repair; continuous state is de-
scribed with the two-dimensional vector (x1, x2) where x1

is the serviceable inventory, x2 is the return inventory. The
decision variables are: the production rate in manufactur-
ing mode u1 and the production rate in remanufacturing
mode u2. We further introduce µ1 (respectively µ2 ) - the
maximal production rate in manufacturing (respectively
remanufacturing) mode in case of full dedication to manu-
facturing (respectively remanufacturing),D - the customer
demand rate, R - the return rate.

The schematic of the system is shown in Fig. 1. State
transitions can be conventionally described by a state
transition matrix G:

G =

(
−p r
p −r

)
(1)

The system temporal evolutions can be described by the
following equations:

ẋ1(t) = u1(t) + u2(t)−D
ẋ2(t) = R− u2(t)
x2(t) ≥ 0

(2)

The last inequality asserts that the system evolves in the
half-plane x2 ≥ 0, because the return inventory can not be
negative.

Production capacity satisfies the following constraint im-
posed on the production rates:

u1

µ1
+

u2

µ2
≤ ξ (3)

Also, the state constraint x2 ≥ 0 implicitly imposes addi-
tional limitations on the production capacity: near x2 = 0,
we must have u2 ≤ R. Alternatively, the return inventory
gets negative, which is meaningless. For ξ = 0 expression
(3) leads to u1 = u2 = 0, saying that there is no production
when the machine is down. For ξ = 1 expression (3) defines
the triangle in (x1, x2) plane shown as shaded area in
Fig. 2. We call this triangle the capacity domain.

Fig. 1. System structure

Fig. 2. Production capacity domain

We define the instantaneous cost h(·), containing produc-
tion, inventory and backlog components:

h(x(t)) = c+1 x
+
1 + c−1 x

−
1 + c2x2,

where c−1 , c
+
1 , c2 are unit costs for backlog, service-

able inventory and return inventory respectively; x+ =
max(0, x), x− = max(0,−x).

The production optimization problem is to chose the
production rates that minimize the long average cost. This
objective can be expressed as follows:

min
u1,u2

(lim sup
T→∞

1

T
E

T∫

0

h(x(t))dt ) (4)

were averaging (E) is performed over all random fail-
ure/repair sequences.

For the numerical analysis we will consider another objec-
tive function

min
u1,u2

(E

∞∫

0

e−ρth(x(t))dt ) (5)

This function represents the discounted cost over infinite
horizon and is known to give a smooth approximation
to (3) when ρ is small enough (Presman et al. (2002)).
Also, the powerful computational methods exist for its
minimization Kusner and Dupuis (1992).

At this stage we would like to formulate the following
assumptions:
1. The production policy u1=D−R, u2=R belongs to the
capacity domain (as shown in Fig. 2).

The rationale behind this assumption is that it must be
possible to maintain both return and serviceable inven-
tories at the constant levels (under such policy equations
(1) become ẋ1 = 0, ẋ2 = 0). Also, this policy corresponds
to the very natural regime of remanufacturing on-return
rate and manufacturing with the rate that results in overall
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