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Abstract: In several manufacturing systems found in the automotive, food and semiconductor
industries, product quality or value deterioration due to excessive residence time in the system
are observed. This phenomenon generates defective or low value products, thus undermining
the performance of these systems. In this paper, we develop an exact analytical method for
calculating the lead time distribution of closed loop systems and present an heuristic to predict
the peaks of this distribution. Numerical results show previously uninvestigated behavior of
closed loop manufacturing systems under lead time constraints and provide insights on the

design of these complex systems.
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1. INTRODUCTION AND OBJECTIVES

The analysis of the lead time distribution is of paramount
importance in manufacturing systems with product qual-
ity or value deterioration or in systems where strict lead
time requirements are imposed by the market. Product
quality and value deterioration due to excessive residence
times, or lead times, during production is a significant phe-
nomenon in several industries, including automotive, food
manufacturing, semiconductor, electronics manufacturing
and in polymer forming. For example, in automotive paint
shops a car body that is affected by prolonged exposure to
the air in the shop floor caused by excessive lead times
between operations, is prone to particle contamination,
leading to unacceptable quality of the output of the paint-
ing process. Moreover, food production is pervaded by
strict requirements on hygiene and delivery precision re-
quiring a maximum allowed storage time before packaging
(Wang et al., 2014). If the production lead-time exceeds
this limit, the product has to be considered as defective
and cannot be delivered to the customer. In these systems,
higher inventory increases the system throughput but also
increases the production lead times, thus increasing the
probability of producing defective items. Therefore, a rel-
evant trade-off is generated between production logistics
and quality performance that requires advanced system
engineering methods to be profitably addressed (Colledani
et al., 2014b), (Inman et al., 2013). The same situation
is found in production systems where strict lead time
constraints are imposed by the customers (Biller et al.,
2013).

The first model considering this phenomenon is proposed
in (Liberopoulos and Tsarouhas, 2002). The installation
of a properly sized in-process buffer led to a reduction

in failure impact on product quality and an increase of
the system efficiency in a croissant production line. In
(Liberopoulos et al., 2007), the authors focused on the
production rate of asynchronous production lines in which
long failures cause the material under processing in the
upstream machines to be scrapped by the system. More-
over, in (Biller et al., 2013) raw material release policies
have been proposed to maximize the throughput under
an average lead time constraint. In these contributions,
the analysis is focused on the average lead time and the
distribution of lead time is not taken into consideration.
More recently, the calculation of the distribution of the
residence time in manufacturing systems have attracted
increasing attention. In (Shi and Gershwin, 2012) a pro-
cedure to numerically compute the distribution of the
lead time in two-machine lines with machines having one
operational state and one down state has been proposed.
In (Colledani et al., 2014a) the analysis of manufacturing
systems under lead time dependent product deterioration
has been proposed for two-machine lines with general
Markovian machines. Finally, the performance of serial
lines with product deterioration is analyzed by calculating
the distribution of the residence time in Bernoulli lines in
(Naebulharam and Zhang, 2014).

In this paper, we propose for the first time an exact
analytical method for the calculation of the lead time
distribution in closed-loop systems. Closed loop systems
are typically found in situations where the workpiece needs
to be clamped on a pallet before being processed by the
machines in the system. After the loading process, the
part on the pallet is processed by a finite number of
processing stages and is released as a finished product by
unloading the part from the pallet at the last processing
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Fig. 1. Example of closed-loop systems.

station. As a consequence, a fixed and constant number
of pallets circulates in the system. The same behavior is
found in pull-type serial manufacturing systems operating
under token-based production control policies, such as
kanban, conwip and basestock. In this case, the number
of tokens regulating the production flow in the system
is fixed and constant due to demand constraints and
new parts are accepted in the system only if free tokens
are available. Both situation can be suitably analyzed
by the method proposed in this paper. Moreover, in
this paper general Markovian machines are considered,
thus enabling to model a wide set of machine behaviors,
including machines with multiple down states, machines
with generally distributed operational and failure times,
machines with correlated failure mechanisms, and stages
with non-identical processing times. This feature makes
the proposed approach applicable to a wide set of real
manufacturing systems. The lead time distribution is used
to calculate the throughput of parts respecting a given lead
time constraint in systems subject to product deterioration
or to lead time requirements imposed by the customer.

The paper is organized as follows. In section 2, the main
assumptions of the analyzed set of manufacturing systems
are introduced. In section 3, the exact analytical method
used to calculate the lead time distribution is presented.
In section 4, numerical results are provided and discussed.
In section 5, insights on the structure of the lead time
distribution are derived, with implications on the system
design rules. Conclusions are drawn in section 6.

2. SYSTEM MODELING
2.1 System Architectures

We consider manufacturing systems formed by K ma-
chines and K buffers that form a closed-loop system,
as represented in Figure 1. The material flow is mod-
eled as a discrete flow of parts and the Blocking Be-
fore Service (BBS) mechanism is considered. Each buffer
B;,i = 1,...,K, located between machine M; and ma-
chine M; {1 (moa k), has finite capacity denoted as N;,i =
1, ..., K. The number of pallets circulating in the system
N, is invariant.

2.2 Machine Behavior

The dynamics of each stage is modeled by a discrete-time
and discrete-state Markov chain of general complexity. In
detail, each stage M;,i = 1,..., K is represented by I;
states, and thus the state indicator a; assumes values in
[1,...,;]. The set containing all the states of M; is called
S;. The dynamics of each stage in visiting its states is
captured by the transition probability matrix A;, that is
a square matrix of size I;. Moreover, we use a vector that
indicates for each state of M; if in the state M; is up or

down. This vector is denoted by p; and its jth entry p; ; is
equal to one (zero) if M; is up (down) in state j. The set of
up states of M; is denoted as U; and the set of down states
is denoted as D;. Stages with the same features have been
considered for the first time in (Gershwin and Fallah-Fini,
2007), and, later, in (Colledani, 2013).

2.8 Part Quality or Value Deterioration

The quality or value of parts deteriorates with the time
parts spend in a critical portion of the system, denoted by
two integers, e and ¢ with 1 < e < ¢ < K, and composed
of those buffers that are between stages M, and M,, in
the direction of the material flow. We will refer to as lead
time of a part the time spent in the buffers between stages
M. and M,. If e = g, then the whole cycle time of a part
is considered. The probability that a part is defective is
a non-decreasing function of its lead time. The function
~(h) indicates the probability that a part released by the
system is defective given that it spent A time units in the
critical portion of system. Defective parts are scrapped at
the end of the line.

2.4 Performance Measures

The main performance measures of interest for this set of
systems are:

e Average total production rate of the system, denoted
by ETot.

e Probability that the lead time, LT, is equal to a given
number of time units, h, i.e, P(LT = h).

e Average effective production rate of conforming parts,
EFPIf which is given by:

BEH = BTN PLT = )L —y(h)] (1)
h=1
e System yield, ysystem e, fraction of conforming
parts: (EEST ) ETot),

3. LEAD TIME DISTRIBUTION

Since all machines are described by a discrete time Markov
chain (DTMC) and the changes in the buffer levels are
determined following the Blocking Before Service assump-
tion, the overall behavior of the system can be modeled
by a DTMC. In the following we describe this DTMC
and exploit its modified version to determine the lead
time distribution. For what concerns the state probability
vectors of the involved DTMCs, the ith entry of a vector
v will be denoted by v(7).

3.1 Discrete time Markov chain of the system

The state of the system is given by a vector, s =
(a1,...,ak,b1,...,bx), that contains an entry for each ma-
chine, namely, the state of the machine, and an entry for
each buffer, namely, the number of parts of the buffer.
. . K
The entries (a1, ...,ax) can assume values in [[;* I; ways.
The entries (b1, ..., bx) can assume values in as many ways
as many ways there exist to distribute the parts among
the buffers. Let us denote the number of possibilities
for (by,...,bx) by C. If every buffer is large enough to
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