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Abstract: The problem of optimal control for a class of non-linear objects with uncontrolled bounded dis-
turbances is formulated in the sense of a differential game. In case of problems with quadratic quality
functional, the problem of optimal control search is reduced to finding of solution of Hamilton-Jacobi-
Isaacs equation. Solutions of this equation at the rate of functioning of the object are searched by means
of special algorithmic procedures obtained with the use of viscosity solution theory. The obtained results
may be used for solving of theoretical and applied problems of mathematics, mechanics, physics, biolo-
gy, chemistry, engineering, control and navigation. This work (research grant Nel4-01-0112) was sup-
ported by The National Research University Higher School of Economics’ Acad. Fund Program.
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1. INTRODUCTION

Successful implementation of obtained theoretical results in a
number of problems is connected with solving of partial first-
order derivative equations. Such partial derivative equations
appear under solving of a great number of theoretical and
applied problems of mathematics, mechanics, physics, biolo-
gy, chemistry, engineering, control, etc. Such equations are
Hamilton-Jacobi equation in theoretical mechanics (Arnold,
1977), Bellman equation in theory of optimal control (Bell-
man, 1957), Isaacs equation (Isaacs, 1965), eikonal equation
in geometrical optics (Courant, 1961), Burgers and Hopf lim-
it equations in gas dynamics and hydrodynamics (Bardi and
Capuzzo-Dolcetta, 1997, Crandal, 1992), etc.

The method of characteristics proposed in the first half of the
19™ century by O. Cauchy for solving boundary problems for
such equations reduces integrating of partial first-order deriv-
ative equations to integrating of a system of ordinary differ-
ential equations. This method is based on the fact that invari-
ance of graph of the classical solution for a boundary prob-
lem is relative to the characteristics. However, in case of par-
tial derivative nonlinear equation, smooth solution exists only
locally.

In 1950-1970s a lot of mathematicians paid much attention to
generalized solutions of Hamilton-Jacobi and other types of
equations (Evans, 1998; Bardi and Capuzzo-Dolcetta, 1997).
Developed methods mainly based on integral methods and
integral properties of generalized solutions.

In early 1980s a concept of viscosity solution was introduced
the existence of which was proved by method of disappearing
viscosity (Crandall et al., 1992). The method is also being
developed at present time. The researches pay attention to
analytical, constructive and numerical methods of construc-
tion of viscosity solutions (Cacace et al., 2011) and applica-
tion of theoretical results to solving of various applied prob-
lems. Another well-known concept of the generalized solu-
tion based on idempotent analysis was proposed in works by
V.P. Maslov and his disciples (1992). By means of this ap-
proach linearizing convex problems, Hamilton-Jacobi equa-

tions with a convex Hamiltonian and their applications to
problems of mathematical physics are studied.

Optimal control problems and differential games are connect-
ed one way or another with a search for solutions of Hamil-
ton-Jacobi-Bellman, Isaaks equations. To solve such equa-
tions, constructive and numerical methods (including grid
ones) were developed (Subbotin et al., 1993, 1994). An im-
portant result of the theory of minimax solutions of first-
order PDE being a base for differential game theory is prov-
ing the equivalence of concepts of minimax and viscosity
solutions (Subbotin, 1995).

Within the frameworks of minimax solution concept originat-
ing from the theory of position differential games (Krasovsky
and Subbotin, 1988) developed by school of N. N. Krasovsky
on the base of minimax evaluations and operations, theorems
of existence and uniqueness, correctness and content-richness
of minimax solution concept for various types of boundary
problems of partial first-order PDE were proved.

Despite available theoretical results in this area, the issue of
Hamilton-Jacobi-Isaacs equation solution in the problems of
differential games with non-linear indefinite dynamic objects
in the rate of their functioning persists and is important today.

2. NON-LINEAR OPTIMAL REGULATOR
2.1. Problem statement

Consider a dynamical non-linear uncertain system described
by the ordinary differential equation

%X(t) =f () +g w0) +g,(xu(®), x(1)=x,
y(t) = Hx(¢) .

Here x(-) = {x(t) eRr" telty,T ]} is a state vector of the sys-
tem; x()€Q, , X €Q, is arange of possible initial condi-

@.1)

m

tions of the system; y € R", m <n is an output of the system;

ueR is a control; weR' is a disturbance;

f(x), g,(x), g,(x) are continuous matrix functions.
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It is assumed that for all x system (2.1) is controllable and

observable, reR". In addition, assume that functions
f(x), g,(x), g,(x) are smooth enough (Cy), so that for
any (f,,x,)€ R, xQ, only one solution x(z,¢,x,) of (2.1)
equation is possible and the corresponding output of the sys-
tem y(¢) = Cx(z,x,) is unique.

Assumption 2.1. The vector function f(x) is continuous

differentiable with respect to xeQ,,ie. f()eC ! (Q,) and

gi(). 8200 C(Qy) .

Assumption 2.2. Without loss of generality, assume that
condition x=0€Q, is a point of equilibrium of the system
under u=0, w=0, so that f(0)=0 and g;(x)=0,
2(x)#0, VxeQ, .

While considering disturbance w(¢f) as an action of some
player against successful performance of a control problem,
we state the control problem in the sense of a differential
game of two players: G, and G,,. Controls u(t)eU and
w(t) e W will be organized using the state feedback princi-
ple.

So, in the present section, the problem of control of non-
linear uncertain object (2.1) will be considered in the sense of
the minimax theory.

Introduce the cost functional of the differential game
J(x,u,w) = K(x(T)) +
1T 2.2
+ f{y T(0 (0) +u T(O)Ru(t) - w T (6)Pw(z) }zt. (2.2)
‘o
In functional (2.2) a symmetrical matrix Q is at least posi-

tively semidefinite, P and R matrices are positive definite.
Assumption 2.3. Limits on control actions U and W,
where the task is executed successfully differential game,
determined by the respective values of the matrices R, P,
parameters oy, i =1,..k and matrix g,(x), g,(x).

Let element & = (x(),u(r),w(r)) be a permissible controllable
process. Functions of class

x() e Cl([tO,T],R") u() e Cl([tO,T],Rr),

w()eC' ([tO,T],Rk )
will  be  considered as
& = (x(0), u(t), w(1)).
The problem of differential game consists in construction of
an optimal strategy with feedback for players G, and G,,,

permissible elements

i.e. in finding of control u(#) minimizing a functional of

(2.2) on the object (2.1) under corresponding counteraction to
control w(z) .

2.2. Optimal controls of differential game

Make two assumptions:
Assumption 2.4. Let f(x), g,(x), g,(x) be smooth enough

functions, so that function V' (¢,x) determined as

V(t,x)=inf sup J(x,u,w)
uelU ew

2.3)

is a differentiable function under any permissible strategies of
players G,,, G, € L,(0,).

Assumption 2.5. A function V(¢,x) determined in (2.3) is
locally Lipschitz in Q, .

In general case, value of an assigned function V(¢,x) is a

solution of dynamic programming problem connected with
partial differential equation of the first order (first order PDE)
Hamilton-Jacobi-Isaacs (Issacs, 1965).

% + minmaxH{x,u,W, aVél,x)} =0,

u w X (2.4)
V(T,x(T)) = K(x(T)),
where H is Hamiltonian
H {x, u, w, M} =
ox
=%{y "0yt +u T(t)Ru(l‘)—wT(t)Pw(t)}+ (2.5)

aV(’ 0 L1 (x) + g, () + g, ()}

Optlmum controls u(#) and w(¢) when performing Assump-
tions 2.3, defined by the relations

T
W)= P'gT (x){@} :
X

u(ty=—R"'g7 (x ){a”’ ")} :

where vector 0V (x)/0x is determined by solution of Hamil-

(2.6)

ton-Jacobi-Isaacs equation:
ov(t, x) 6V(t X)

S~
o (2.7)
1 aV(t,x) oV (t,x)

T mx){ p } X" ()H"OHx(1) =0,
V(T,x(T)) = K(x(T)),

where

1(x)=g,(x)R"'g; (x)- g, (x)P'g] (x). 2.8)

The main difficulty under implementation of controls in form
(2.6) consists in finding of vector oV (x)/0x(¢) satisfying

scalar partial derivative equation (2.7).

2.3. Conditions of existence of optimal solution

Conditions of existence of optimal solution of the set prob-
lem are determined by properties of matrix 77/(x) . To deter-

mine properties of this matrix, consider in this section prob-
lem of synthesis of stabilizing controls for system (2.1), i.e.
consider the problem with unlimited time of transition pro-
cess. Quality functional for such a problem has the form

J(x,u,w)= 2.9

T
= Tlgr;%({{y YOO y@&) +u " (O)Ru(t) —w T ()Pw(1) }Jz.
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