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Abstract: Problems of effective control of gas flow are closely related to the system of equations
describing the motion of the gas in the gas collection network of a gas field. Due to the great
length of gas gathering networks and the necessity to consider the compressibility of the gas,
pressure and flow distributions are described by the Navier - Stokes equations. For the successful
application of difference methods for solving these equations, their stability must be thoroughly
investigated. This is the goal of current article.
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INTRODUCTION

The effective gas flow control problem is closely connected
to solving differential equation system which models gas
movement in gas collecting system pipes. Due to vast
length of gas collecting system and necessity to take
gas compressibility into account, pressure and flow rate
are modeled by Navier-Stokes equations (see Korotaev
(1989)). To successfully apply finite-difference methods in
solving these equations, it is necessary to investigate their
stability. This investigation can be carried out using spec-
tral condition and Babenko-Gelfand method (see Tsynkov
(2006))

1. PROBLEM FORMULATION

Let us consider a linear segment of a gas network. To
describe pressure and flow distributions, we’ll use the
following equations

∂Q(x, t)

∂t
= −f

ρ

∂P (x, t)

∂x
− 8πµ

fρ
Q(x, t), (1)

∂P (x, t)
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f
c2

∂Q(x, t)
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(2)

(1) and (2) follow from momentum and mass conservation
laws respectively (see Korotaev (1989)). The following
notations are used: x ∈ [0, L] and t ∈ [0, T ] are space and
time coordinates, Q(x, t) and P (x, t) — flow and pressure
functions, ρ(P ) and µ – gas density and dynamic viscosity,

f – pipe cross-section area, c =
√
E/ρ – speed of sound in
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the gas flow, E – elastic modulus. As boundary and initial
conditions, let us assume

P (x, 0) = P 0(x), Q(x, 0) = Q0(x),
P (0, t) = 0, P (L, t) = 0.

(3)

Equations (1) - (2) are a nonlinear partial differential
equations system. With constant ρ and c ( f is assumed
fixed) these equations become linear with constant coeffi-
cients. This property is used in finite difference stability
investigation.

Let us consider (1) - (3) and the corresponding finite
difference equations. Let the grid be defined by lines
x = mh, t = nτ , where m = 0,M , h = L/M , n = 0, T/τ ,
τ = rh, r = const. Unknown grid functions are designated
Pn
m and Qn

m, so boundary conditions (3) are transformed
to

P 0
m = ϕPm , Q0

m = ϕQm ,m = 0,M,M = [L/h]

Pn+1
0 = 0, Pn+1

M = 0, n = 0, [T/τ ].
(4)

Thus, to investigate the stability of the difference scheme
approximating (1) - (3), let us use spectral analysis and
frozen coefficient principle (Babenko and Gelfand condi-
tion, see Tsynkov (2006)). We’ll consider 3 subproblems
with boundary conditions (4):

Proposition 1. In the initial problem, we’ll assume ρ(P ),
c(P ) satisfy the following constraints:

ρmin ≤ ρ(P ) ≤ ρmax, cmin ≤ c(P ) ≤ cmax, (5)

where ρmin = ρ(0) , ρmax = ρ(Pmax) are obtained from
Benedict–Webb–Rubin equation (see Korotaev (1989)).
Coefficients are to be fixed in intervals [0, ρmax] , [0, cmax],
and the difference equations will be considered not only in

IFAC Conference on Manufacturing Modelling,
Management and Control
June 28-30, 2016. Troyes, France

Copyright © 2016 IFAC 366

Stability Investigation of Difference
Schemes for Gas Dynamics Equations �

A. Akhmetzianov ∗ I. Boronin ∗∗ A. Salnikov ∗∗∗

A. Shevlyakov ∗∗∗∗

∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:
awa@ipu.ru)

∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:
boronin@ipu.ru)

∗∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:
salnikov@ipu.ru)

∗∗∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:
aash29@gmail.com)

Abstract: Problems of effective control of gas flow are closely related to the system of equations
describing the motion of the gas in the gas collection network of a gas field. Due to the great
length of gas gathering networks and the necessity to consider the compressibility of the gas,
pressure and flow distributions are described by the Navier - Stokes equations. For the successful
application of difference methods for solving these equations, their stability must be thoroughly
investigated. This is the goal of current article.

Keywords: stability, difference schemes, gas, Navier - Stokes equations

INTRODUCTION

The effective gas flow control problem is closely connected
to solving differential equation system which models gas
movement in gas collecting system pipes. Due to vast
length of gas collecting system and necessity to take
gas compressibility into account, pressure and flow rate
are modeled by Navier-Stokes equations (see Korotaev
(1989)). To successfully apply finite-difference methods in
solving these equations, it is necessary to investigate their
stability. This investigation can be carried out using spec-
tral condition and Babenko-Gelfand method (see Tsynkov
(2006))

1. PROBLEM FORMULATION

Let us consider a linear segment of a gas network. To
describe pressure and flow distributions, we’ll use the
following equations

∂Q(x, t)

∂t
= −f

ρ

∂P (x, t)

∂x
− 8πµ

fρ
Q(x, t), (1)

∂P (x, t)

∂t
= − ρ

f
c2

∂Q(x, t)

∂x
(2)

(1) and (2) follow from momentum and mass conservation
laws respectively (see Korotaev (1989)). The following
notations are used: x ∈ [0, L] and t ∈ [0, T ] are space and
time coordinates, Q(x, t) and P (x, t) — flow and pressure
functions, ρ(P ) and µ – gas density and dynamic viscosity,

f – pipe cross-section area, c =
√
E/ρ – speed of sound in

� We would like to express our gratitude for the financial support of
this work from the Russian Fund for Fundamental Research (grants
N 14-08-01265 and N 15-08-08698)

the gas flow, E – elastic modulus. As boundary and initial
conditions, let us assume

P (x, 0) = P 0(x), Q(x, 0) = Q0(x),
P (0, t) = 0, P (L, t) = 0.

(3)

Equations (1) - (2) are a nonlinear partial differential
equations system. With constant ρ and c ( f is assumed
fixed) these equations become linear with constant coeffi-
cients. This property is used in finite difference stability
investigation.

Let us consider (1) - (3) and the corresponding finite
difference equations. Let the grid be defined by lines
x = mh, t = nτ , where m = 0,M , h = L/M , n = 0, T/τ ,
τ = rh, r = const. Unknown grid functions are designated
Pn
m and Qn

m, so boundary conditions (3) are transformed
to

P 0
m = ϕPm , Q0

m = ϕQm ,m = 0,M,M = [L/h]

Pn+1
0 = 0, Pn+1

M = 0, n = 0, [T/τ ].
(4)

Thus, to investigate the stability of the difference scheme
approximating (1) - (3), let us use spectral analysis and
frozen coefficient principle (Babenko and Gelfand condi-
tion, see Tsynkov (2006)). We’ll consider 3 subproblems
with boundary conditions (4):

Proposition 1. In the initial problem, we’ll assume ρ(P ),
c(P ) satisfy the following constraints:

ρmin ≤ ρ(P ) ≤ ρmax, cmin ≤ c(P ) ≤ cmax, (5)

where ρmin = ρ(0) , ρmax = ρ(Pmax) are obtained from
Benedict–Webb–Rubin equation (see Korotaev (1989)).
Coefficients are to be fixed in intervals [0, ρmax] , [0, cmax],
and the difference equations will be considered not only in

IFAC Conference on Manufacturing Modelling,
Management and Control
June 28-30, 2016. Troyes, France

Copyright © 2016 IFAC 366

Stability Investigation of Difference
Schemes for Gas Dynamics Equations �

A. Akhmetzianov ∗ I. Boronin ∗∗ A. Salnikov ∗∗∗

A. Shevlyakov ∗∗∗∗

∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:
awa@ipu.ru)

∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:
boronin@ipu.ru)

∗∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:
salnikov@ipu.ru)

∗∗∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:
aash29@gmail.com)

Abstract: Problems of effective control of gas flow are closely related to the system of equations
describing the motion of the gas in the gas collection network of a gas field. Due to the great
length of gas gathering networks and the necessity to consider the compressibility of the gas,
pressure and flow distributions are described by the Navier - Stokes equations. For the successful
application of difference methods for solving these equations, their stability must be thoroughly
investigated. This is the goal of current article.

Keywords: stability, difference schemes, gas, Navier - Stokes equations

INTRODUCTION

The effective gas flow control problem is closely connected
to solving differential equation system which models gas
movement in gas collecting system pipes. Due to vast
length of gas collecting system and necessity to take
gas compressibility into account, pressure and flow rate
are modeled by Navier-Stokes equations (see Korotaev
(1989)). To successfully apply finite-difference methods in
solving these equations, it is necessary to investigate their
stability. This investigation can be carried out using spec-
tral condition and Babenko-Gelfand method (see Tsynkov
(2006))

1. PROBLEM FORMULATION

Let us consider a linear segment of a gas network. To
describe pressure and flow distributions, we’ll use the
following equations

∂Q(x, t)

∂t
= −f

ρ

∂P (x, t)

∂x
− 8πµ

fρ
Q(x, t), (1)

∂P (x, t)

∂t
= − ρ

f
c2

∂Q(x, t)

∂x
(2)

(1) and (2) follow from momentum and mass conservation
laws respectively (see Korotaev (1989)). The following
notations are used: x ∈ [0, L] and t ∈ [0, T ] are space and
time coordinates, Q(x, t) and P (x, t) — flow and pressure
functions, ρ(P ) and µ – gas density and dynamic viscosity,

f – pipe cross-section area, c =
√
E/ρ – speed of sound in

� We would like to express our gratitude for the financial support of
this work from the Russian Fund for Fundamental Research (grants
N 14-08-01265 and N 15-08-08698)

the gas flow, E – elastic modulus. As boundary and initial
conditions, let us assume

P (x, 0) = P 0(x), Q(x, 0) = Q0(x),
P (0, t) = 0, P (L, t) = 0.

(3)

Equations (1) - (2) are a nonlinear partial differential
equations system. With constant ρ and c ( f is assumed
fixed) these equations become linear with constant coeffi-
cients. This property is used in finite difference stability
investigation.

Let us consider (1) - (3) and the corresponding finite
difference equations. Let the grid be defined by lines
x = mh, t = nτ , where m = 0,M , h = L/M , n = 0, T/τ ,
τ = rh, r = const. Unknown grid functions are designated
Pn
m and Qn

m, so boundary conditions (3) are transformed
to

P 0
m = ϕPm , Q0

m = ϕQm ,m = 0,M,M = [L/h]

Pn+1
0 = 0, Pn+1

M = 0, n = 0, [T/τ ].
(4)

Thus, to investigate the stability of the difference scheme
approximating (1) - (3), let us use spectral analysis and
frozen coefficient principle (Babenko and Gelfand condi-
tion, see Tsynkov (2006)). We’ll consider 3 subproblems
with boundary conditions (4):

Proposition 1. In the initial problem, we’ll assume ρ(P ),
c(P ) satisfy the following constraints:

ρmin ≤ ρ(P ) ≤ ρmax, cmin ≤ c(P ) ≤ cmax, (5)

where ρmin = ρ(0) , ρmax = ρ(Pmax) are obtained from
Benedict–Webb–Rubin equation (see Korotaev (1989)).
Coefficients are to be fixed in intervals [0, ρmax] , [0, cmax],
and the difference equations will be considered not only in

IFAC Conference on Manufacturing Modelling,
Management and Control
June 28-30, 2016. Troyes, France

Copyright © 2016 IFAC 366

Stability Investigation of Difference
Schemes for Gas Dynamics Equations �

A. Akhmetzianov ∗ I. Boronin ∗∗ A. Salnikov ∗∗∗

A. Shevlyakov ∗∗∗∗

∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:
awa@ipu.ru)

∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:
boronin@ipu.ru)

∗∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:
salnikov@ipu.ru)

∗∗∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:
aash29@gmail.com)

Abstract: Problems of effective control of gas flow are closely related to the system of equations
describing the motion of the gas in the gas collection network of a gas field. Due to the great
length of gas gathering networks and the necessity to consider the compressibility of the gas,
pressure and flow distributions are described by the Navier - Stokes equations. For the successful
application of difference methods for solving these equations, their stability must be thoroughly
investigated. This is the goal of current article.

Keywords: stability, difference schemes, gas, Navier - Stokes equations

INTRODUCTION

The effective gas flow control problem is closely connected
to solving differential equation system which models gas
movement in gas collecting system pipes. Due to vast
length of gas collecting system and necessity to take
gas compressibility into account, pressure and flow rate
are modeled by Navier-Stokes equations (see Korotaev
(1989)). To successfully apply finite-difference methods in
solving these equations, it is necessary to investigate their
stability. This investigation can be carried out using spec-
tral condition and Babenko-Gelfand method (see Tsynkov
(2006))

1. PROBLEM FORMULATION

Let us consider a linear segment of a gas network. To
describe pressure and flow distributions, we’ll use the
following equations

∂Q(x, t)

∂t
= −f

ρ

∂P (x, t)

∂x
− 8πµ

fρ
Q(x, t), (1)

∂P (x, t)

∂t
= − ρ

f
c2

∂Q(x, t)

∂x
(2)

(1) and (2) follow from momentum and mass conservation
laws respectively (see Korotaev (1989)). The following
notations are used: x ∈ [0, L] and t ∈ [0, T ] are space and
time coordinates, Q(x, t) and P (x, t) — flow and pressure
functions, ρ(P ) and µ – gas density and dynamic viscosity,

f – pipe cross-section area, c =
√

E/ρ – speed of sound in

� We would like to express our gratitude for the financial support of
this work from the Russian Fund for Fundamental Research (grants
N 14-08-01265 and N 15-08-08698)

the gas flow, E – elastic modulus. As boundary and initial
conditions, let us assume

P (x, 0) = P 0(x), Q(x, 0) = Q0(x),
P (0, t) = 0, P (L, t) = 0.

(3)

Equations (1) - (2) are a nonlinear partial differential
equations system. With constant ρ and c ( f is assumed
fixed) these equations become linear with constant coeffi-
cients. This property is used in finite difference stability
investigation.

Let us consider (1) - (3) and the corresponding finite
difference equations. Let the grid be defined by lines
x = mh, t = nτ , where m = 0,M , h = L/M , n = 0, T/τ ,
τ = rh, r = const. Unknown grid functions are designated
Pn
m and Qn

m, so boundary conditions (3) are transformed
to

P 0
m = ϕPm , Q0

m = ϕQm ,m = 0,M,M = [L/h]

Pn+1
0 = 0, Pn+1

M = 0, n = 0, [T/τ ].
(4)

Thus, to investigate the stability of the difference scheme
approximating (1) - (3), let us use spectral analysis and
frozen coefficient principle (Babenko and Gelfand condi-
tion, see Tsynkov (2006)). We’ll consider 3 subproblems
with boundary conditions (4):

Proposition 1. In the initial problem, we’ll assume ρ(P ),
c(P ) satisfy the following constraints:

ρmin ≤ ρ(P ) ≤ ρmax, cmin ≤ c(P ) ≤ cmax, (5)

where ρmin = ρ(0) , ρmax = ρ(Pmax) are obtained from
Benedict–Webb–Rubin equation (see Korotaev (1989)).
Coefficients are to be fixed in intervals [0, ρmax] , [0, cmax],
and the difference equations will be considered not only in

IFAC Conference on Manufacturing Modelling,
Management and Control
June 28-30, 2016. Troyes, France

Copyright © 2016 IFAC 366



 A. Akhmetzianov et al. / IFAC-PapersOnLine 49-12 (2016) 366–371 367

Stability Investigation of Difference
Schemes for Gas Dynamics Equations �

A. Akhmetzianov ∗ I. Boronin ∗∗ A. Salnikov ∗∗∗

A. Shevlyakov ∗∗∗∗

∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:
awa@ipu.ru)

∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:
boronin@ipu.ru)

∗∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:
salnikov@ipu.ru)

∗∗∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:
aash29@gmail.com)

Abstract: Problems of effective control of gas flow are closely related to the system of equations
describing the motion of the gas in the gas collection network of a gas field. Due to the great
length of gas gathering networks and the necessity to consider the compressibility of the gas,
pressure and flow distributions are described by the Navier - Stokes equations. For the successful
application of difference methods for solving these equations, their stability must be thoroughly
investigated. This is the goal of current article.

Keywords: stability, difference schemes, gas, Navier - Stokes equations

INTRODUCTION

The effective gas flow control problem is closely connected
to solving differential equation system which models gas
movement in gas collecting system pipes. Due to vast
length of gas collecting system and necessity to take
gas compressibility into account, pressure and flow rate
are modeled by Navier-Stokes equations (see Korotaev
(1989)). To successfully apply finite-difference methods in
solving these equations, it is necessary to investigate their
stability. This investigation can be carried out using spec-
tral condition and Babenko-Gelfand method (see Tsynkov
(2006))

1. PROBLEM FORMULATION

Let us consider a linear segment of a gas network. To
describe pressure and flow distributions, we’ll use the
following equations

∂Q(x, t)

∂t
= −f

ρ

∂P (x, t)

∂x
− 8πµ

fρ
Q(x, t), (1)

∂P (x, t)

∂t
= − ρ

f
c2

∂Q(x, t)

∂x
(2)

(1) and (2) follow from momentum and mass conservation
laws respectively (see Korotaev (1989)). The following
notations are used: x ∈ [0, L] and t ∈ [0, T ] are space and
time coordinates, Q(x, t) and P (x, t) — flow and pressure
functions, ρ(P ) and µ – gas density and dynamic viscosity,

f – pipe cross-section area, c =
√
E/ρ – speed of sound in

� We would like to express our gratitude for the financial support of
this work from the Russian Fund for Fundamental Research (grants
N 14-08-01265 and N 15-08-08698)

the gas flow, E – elastic modulus. As boundary and initial
conditions, let us assume

P (x, 0) = P 0(x), Q(x, 0) = Q0(x),
P (0, t) = 0, P (L, t) = 0.

(3)

Equations (1) - (2) are a nonlinear partial differential
equations system. With constant ρ and c ( f is assumed
fixed) these equations become linear with constant coeffi-
cients. This property is used in finite difference stability
investigation.

Let us consider (1) - (3) and the corresponding finite
difference equations. Let the grid be defined by lines
x = mh, t = nτ , where m = 0,M , h = L/M , n = 0, T/τ ,
τ = rh, r = const. Unknown grid functions are designated
Pn
m and Qn

m, so boundary conditions (3) are transformed
to

P 0
m = ϕPm , Q0

m = ϕQm ,m = 0,M,M = [L/h]

Pn+1
0 = 0, Pn+1

M = 0, n = 0, [T/τ ].
(4)

Thus, to investigate the stability of the difference scheme
approximating (1) - (3), let us use spectral analysis and
frozen coefficient principle (Babenko and Gelfand condi-
tion, see Tsynkov (2006)). We’ll consider 3 subproblems
with boundary conditions (4):

Proposition 1. In the initial problem, we’ll assume ρ(P ),
c(P ) satisfy the following constraints:

ρmin ≤ ρ(P ) ≤ ρmax, cmin ≤ c(P ) ≤ cmax, (5)

where ρmin = ρ(0) , ρmax = ρ(Pmax) are obtained from
Benedict–Webb–Rubin equation (see Korotaev (1989)).
Coefficients are to be fixed in intervals [0, ρmax] , [0, cmax],
and the difference equations will be considered not only in

IFAC Conference on Manufacturing Modelling,
Management and Control
June 28-30, 2016. Troyes, France

Copyright © 2016 IFAC 366

Stability Investigation of Difference
Schemes for Gas Dynamics Equations �

A. Akhmetzianov ∗ I. Boronin ∗∗ A. Salnikov ∗∗∗

A. Shevlyakov ∗∗∗∗

∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:
awa@ipu.ru)

∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:
boronin@ipu.ru)

∗∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:
salnikov@ipu.ru)

∗∗∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:
aash29@gmail.com)

Abstract: Problems of effective control of gas flow are closely related to the system of equations
describing the motion of the gas in the gas collection network of a gas field. Due to the great
length of gas gathering networks and the necessity to consider the compressibility of the gas,
pressure and flow distributions are described by the Navier - Stokes equations. For the successful
application of difference methods for solving these equations, their stability must be thoroughly
investigated. This is the goal of current article.

Keywords: stability, difference schemes, gas, Navier - Stokes equations

INTRODUCTION

The effective gas flow control problem is closely connected
to solving differential equation system which models gas
movement in gas collecting system pipes. Due to vast
length of gas collecting system and necessity to take
gas compressibility into account, pressure and flow rate
are modeled by Navier-Stokes equations (see Korotaev
(1989)). To successfully apply finite-difference methods in
solving these equations, it is necessary to investigate their
stability. This investigation can be carried out using spec-
tral condition and Babenko-Gelfand method (see Tsynkov
(2006))

1. PROBLEM FORMULATION

Let us consider a linear segment of a gas network. To
describe pressure and flow distributions, we’ll use the
following equations

∂Q(x, t)

∂t
= −f

ρ

∂P (x, t)

∂x
− 8πµ

fρ
Q(x, t), (1)

∂P (x, t)

∂t
= − ρ

f
c2

∂Q(x, t)

∂x
(2)

(1) and (2) follow from momentum and mass conservation
laws respectively (see Korotaev (1989)). The following
notations are used: x ∈ [0, L] and t ∈ [0, T ] are space and
time coordinates, Q(x, t) and P (x, t) — flow and pressure
functions, ρ(P ) and µ – gas density and dynamic viscosity,

f – pipe cross-section area, c =
√
E/ρ – speed of sound in

� We would like to express our gratitude for the financial support of
this work from the Russian Fund for Fundamental Research (grants
N 14-08-01265 and N 15-08-08698)

the gas flow, E – elastic modulus. As boundary and initial
conditions, let us assume

P (x, 0) = P 0(x), Q(x, 0) = Q0(x),
P (0, t) = 0, P (L, t) = 0.

(3)

Equations (1) - (2) are a nonlinear partial differential
equations system. With constant ρ and c ( f is assumed
fixed) these equations become linear with constant coeffi-
cients. This property is used in finite difference stability
investigation.

Let us consider (1) - (3) and the corresponding finite
difference equations. Let the grid be defined by lines
x = mh, t = nτ , where m = 0,M , h = L/M , n = 0, T/τ ,
τ = rh, r = const. Unknown grid functions are designated
Pn
m and Qn

m, so boundary conditions (3) are transformed
to

P 0
m = ϕPm , Q0

m = ϕQm ,m = 0,M,M = [L/h]

Pn+1
0 = 0, Pn+1

M = 0, n = 0, [T/τ ].
(4)

Thus, to investigate the stability of the difference scheme
approximating (1) - (3), let us use spectral analysis and
frozen coefficient principle (Babenko and Gelfand condi-
tion, see Tsynkov (2006)). We’ll consider 3 subproblems
with boundary conditions (4):

Proposition 1. In the initial problem, we’ll assume ρ(P ),
c(P ) satisfy the following constraints:

ρmin ≤ ρ(P ) ≤ ρmax, cmin ≤ c(P ) ≤ cmax, (5)

where ρmin = ρ(0) , ρmax = ρ(Pmax) are obtained from
Benedict–Webb–Rubin equation (see Korotaev (1989)).
Coefficients are to be fixed in intervals [0, ρmax] , [0, cmax],
and the difference equations will be considered not only in

IFAC Conference on Manufacturing Modelling,
Management and Control
June 28-30, 2016. Troyes, France

Copyright © 2016 IFAC 366

Stability Investigation of Difference
Schemes for Gas Dynamics Equations �

A. Akhmetzianov ∗ I. Boronin ∗∗ A. Salnikov ∗∗∗

A. Shevlyakov ∗∗∗∗

∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:
awa@ipu.ru)

∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:
boronin@ipu.ru)

∗∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:
salnikov@ipu.ru)

∗∗∗∗ Institute of Control Sciences of RAS, Moscow, Russia (e-mail:
aash29@gmail.com)

Abstract: Problems of effective control of gas flow are closely related to the system of equations
describing the motion of the gas in the gas collection network of a gas field. Due to the great
length of gas gathering networks and the necessity to consider the compressibility of the gas,
pressure and flow distributions are described by the Navier - Stokes equations. For the successful
application of difference methods for solving these equations, their stability must be thoroughly
investigated. This is the goal of current article.

Keywords: stability, difference schemes, gas, Navier - Stokes equations

INTRODUCTION

The effective gas flow control problem is closely connected
to solving differential equation system which models gas
movement in gas collecting system pipes. Due to vast
length of gas collecting system and necessity to take
gas compressibility into account, pressure and flow rate
are modeled by Navier-Stokes equations (see Korotaev
(1989)). To successfully apply finite-difference methods in
solving these equations, it is necessary to investigate their
stability. This investigation can be carried out using spec-
tral condition and Babenko-Gelfand method (see Tsynkov
(2006))

1. PROBLEM FORMULATION

Let us consider a linear segment of a gas network. To
describe pressure and flow distributions, we’ll use the
following equations

∂Q(x, t)

∂t
= −f

ρ

∂P (x, t)

∂x
− 8πµ

fρ
Q(x, t), (1)

∂P (x, t)

∂t
= − ρ

f
c2

∂Q(x, t)

∂x
(2)

(1) and (2) follow from momentum and mass conservation
laws respectively (see Korotaev (1989)). The following
notations are used: x ∈ [0, L] and t ∈ [0, T ] are space and
time coordinates, Q(x, t) and P (x, t) — flow and pressure
functions, ρ(P ) and µ – gas density and dynamic viscosity,

f – pipe cross-section area, c =
√
E/ρ – speed of sound in
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the gas flow, E – elastic modulus. As boundary and initial
conditions, let us assume

P (x, 0) = P 0(x), Q(x, 0) = Q0(x),
P (0, t) = 0, P (L, t) = 0.

(3)

Equations (1) - (2) are a nonlinear partial differential
equations system. With constant ρ and c ( f is assumed
fixed) these equations become linear with constant coeffi-
cients. This property is used in finite difference stability
investigation.

Let us consider (1) - (3) and the corresponding finite
difference equations. Let the grid be defined by lines
x = mh, t = nτ , where m = 0,M , h = L/M , n = 0, T/τ ,
τ = rh, r = const. Unknown grid functions are designated
Pn
m and Qn

m, so boundary conditions (3) are transformed
to

P 0
m = ϕPm , Q0

m = ϕQm ,m = 0,M,M = [L/h]

Pn+1
0 = 0, Pn+1

M = 0, n = 0, [T/τ ].
(4)

Thus, to investigate the stability of the difference scheme
approximating (1) - (3), let us use spectral analysis and
frozen coefficient principle (Babenko and Gelfand condi-
tion, see Tsynkov (2006)). We’ll consider 3 subproblems
with boundary conditions (4):

Proposition 1. In the initial problem, we’ll assume ρ(P ),
c(P ) satisfy the following constraints:

ρmin ≤ ρ(P ) ≤ ρmax, cmin ≤ c(P ) ≤ cmax, (5)

where ρmin = ρ(0) , ρmax = ρ(Pmax) are obtained from
Benedict–Webb–Rubin equation (see Korotaev (1989)).
Coefficients are to be fixed in intervals [0, ρmax] , [0, cmax],
and the difference equations will be considered not only in
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0 ≤ m ≤ M , but with any positive m, i.e. m = 0,±1, . . .
for all n = 0, 1, . . . , [T/τ ]− 1.

Proposition 2. If the coefficients ρ(P ) and c(P ) and frozen
at the left end of the interval [0, L], i.e. at the points
P = 0, t̃, c1 = c(Pn

0 ), ρl = ρ(Pn
0 ), m = 1,M , Pn

0 = 0,

0 ≤ t̃ ≤ [T/τ ] = M , it is natural to consider only the grid
functions of the form Pn

m → 0 , Qn
m → 0 at m → +∞.

Proposition 3. If the coefficients ρ(P ) and c(P ) and frozen
at the right end of the interval [0, L], let us assume
m = . . . ,−2,−1, 0, 1, 2, . . . ,M − 1, Pn+1

M = 0. Then we
only consider grid functions that satisfy Pn

m → 0, Qn
m → 0

at m → −∞.

For each of these 3 subproblems, we search for eigenvalues
of the operator A : Pn, Qn → Pn+1, Qn+1 which admit
solutions Pn

m = λnP 0
m, Qn

m = λnQ0
m. In the case of

problem 1, functions Pn
m, Qn

m, m = 0,±1, . . . must be
bounded, in the case of problem 2 Pn

m → 0, Qn
m → 0,

m → +∞, and in the case of problem 3 Pn
m → 0, Qn

m → 0,
m → −∞.

For the difference scheme to be stable, all of the eigenvalues
of each of 3 subproblems must be located inside the unit
circle |λ| ≤ 1 (see Tsynkov (2006)).

2. EXPLICIT SCHEMES

Consider the stability of the explicit scheme approximation

Pn+1
m − Pn

m =
τ

h

(
− ρ

f
c2
)n

m

(Qn
m+1 −Qn

m),

Qn+1
m −Qn

m =
τ

h

(
−f

ρ

)n

m

(Pn
m+1 − Pn

m)−

−
(
8πµ

fρ

)n

m

Qn
mτ,

(6)

or

Pn+1
m = Pn

m − βn
m(Qn

m+1 −Qn
m), βn

m =
(
ρmc2m/f

)n
r,

Qn+1
m = Qn

m − Sn
1m(Pn

m+1 − Pn
m)− Sn

2mQn
m,

Sn
1m = (f/ρm)

n
r, Sn

2m = (8πµ/fρm)
n
τ.

(7)

According to reasoning of section 1, let us consider the
solution of problem 1 in form

Pn
m = λnP 0eiαm, Qn

m = λnQ0eiαm (8)

where m = 0,±1, . . . , α - real parameter. From (6)-(8)
follows that

P 0(λ− 1) +Q0β̂m(eiα − 1) = 0,

P 0(Ŝ1m(eiα − 1)) +Q0(λ− 1 + (Ŝ2m) = 0,
(9)

where β̂, Ŝ1, Ŝ2 numbers from (7) defined by arbitrary
points on intervals (5). System (9) has a nontrivial solution
under the condition of equality to zero of its determinant

(λ− 1)(λ− 1 + Ŝ2m)− Ŝ1mβ̂m(eiα − 1)2 = 0. (10)

Since Ŝ2 has the order τ , let Ŝ2 = 0. From (10) follows

λ1 = 1 +

√
Ŝ1β̂(e

iα − 1), λ2 = 1−
√
Ŝ1β̂(e

iα − 1). (11)

It is necessary to evaluate the module of the complex
values λ1 and λ2. First of all let us evaluate the module of

the expression d + beiα, where d and b - real numbers. It
can be seen that

|d| − |b| ≤ |d+ beiα| ≤ |d|+ |b| (12)

Consider the root λ2:

d = 1 +

√
Ŝ1β̂, b = −

√
Ŝ1β̂,

|λ2| ≤ |d|+ |b| = 1 + 2

√
Ŝ1β̂ = 1 + 2ĉr.

(13)

Thus, the eigenvalues of the transition from Pn
m, Qn

m to
Pn+1
m , Qn+1

m 1 in the problem 1 may be greater than one.
Due to the analytic dependence of the roots λ1 and λ2 from

small parameter Ŝ2, inequality (12) holds if Ŝ2 sufficiently
small. Thus, the explicit scheme (6) will be unstable.

2.1 Problem 1

Considered difference scheme approximates (1) - (3) with
the first order of smallness relative to h. To construct
a second order difference scheme, we use the approach
described in Tsynkov (2006), that is based on the method
of undetermined coefficients.

Let us introduce the difference function with undetermined
coefficients

ΛPn ≡ a0Pn+1
m + a0P

n
m + a1P

n
m+1 + a−1P

n
m−1+

+b0Q
n
m + b1Q

n
m+1 + b−1Q

n
m−1,

ΛQn ≡ c0P
n
m + c1P

n
m+1 + c−1P

n
m−1 + d0Qn+1

m +
+d0Q

n
m + d1Q

n
m+1 + d−1Q

n
m−1.

(14)

Let us introduce the function ΛP , ΛQ, using the equation
(1) and (2)

ΛP = Pt + β̄Qx,ΛQ = Qt + S̄1Px + S̄2Q. (15)

Hence

Pt = ΛP − β̄Qx, Qt = ΛQ− S̄1Px − S̄2Q,
Ptt = (ΛP )t − β̄(Qt)x = (ΛP )t − β̄(ΛQ)x+

+β̄S̄1Pxx + β̄S̄2Qx,
Qtt = (ΛQ)t − S̄1(ΛP − β̄Qx)x − S̄2Qt =
= (ΛQ)t − S̄1(ΛP )x + β̄S̄1Qxx − S̄2ΛQ+

+S̄1S̄2Px + S̄2
2Q.

(16)

Here β̄ = ρc2/f , S̄1 = f/ρ, S̄2 = 8πµ/fρ for arbitrary
fixed values ρ, c, S1, S2 from (5). Using Taylor’s formula
and equality (14) - (16), we can write a function ΛPn and
ΛQn in the form

ΛPh = a0Pn
m + a0rh(Pt)

n
m + a0r2h2(Ptt)

n
m/2+

+a0P
n
m + a1P

n
m + a−1P

n
m + (a1 − a−1)h(Px)

n
m+

+(a1 + a−1)h
2/2(Pxx)

n
m + b0Q

n
m + b1Q

n
m+

+b−1Q
n
m + h(b1 − b−1)(Qx)

n
m+

++ h2(b1 + b−1)(Qxx)
n
m/2 =

= a0rh(ΛP )nm + a0r2h2(ΛPt)
n
m/2−

−β̄a0r2h2(ΛQx)
n
m/2+

+Pn
m(a0 + a0 + a1 + a−1) + (Px)

n
mh(a1 − a−1)+

+(Pxx)
n
m(a0r2h2β̄S̄1/2+

+(a1 + a−1)h
2/2) +Qn

m(b0 + b1 + b−1)+
−(Qx)

n
m(h(b1 − b−1)−−a0rhβ̄+

+a0r2h2β̄S̄2/2) + (Qxx)
n
m(b1 + b−1)h

2/2 + o(h2).

(17)
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