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Abstract: This paper proposes algorithms that incrementally compute control sequences that drive the marking of 

untimed Petri nets from an initial value to a reference one, avoiding forbidden states with a length or duration that 

approaches the minimal value. The proposed algorithms are applicable to a large class of discrete event systems with 

or without temporal specifications in particular in the domain of flexible manufacturing, communication and computer 

science or transportation and traffic. To overcome the most burdensome part of the computations, the sequences 

encoded in a small area of the reachability graph are worked out. The main contribution is to propose an estimation of 

the minimal length or duration of the remaining sequences to the reference based on the computation of the firing count 

vectors. The approach is suitable for deadlock-free scheduling problems encountered with flexible manufacturing 

systems. 

Keywords: Discrete event systems, Petri nets deadlock-free scheduling problems, model predictive control.

 

1. Introduction 

Petri nets (PNs) are commonly used for control issues of discrete 

event systems (DESs) (Cassandras, 1993; David & Alla, 1992) The 

design of firing sequences that reach a specific state and optimize a 

specific cost function (usually the makespan) is a basic objective in 

many control problems, in particular in deadlock-free scheduling 

problems because this objective leads directly to the design of optimal 

cycle of tasks in job shop problems. The difficulty is that deadlock-

free scheduling problems are known to be NP-hard due to multi-layer 

resource sharing and routing flexibility of the jobs. Thus, a large 

literature has been devoted to such optimization, in particular with PN 

models. On the one hand, the main contributions to that problem have 

been provided by some adaptations of the Dijkstra and A* algorithms 

to the PN (Chretienne, 1986; Lee & DiCesare, 1994). Such algorithms 

are suitable to partially explores the reachability graph of the net, and 

generate efficient schedules with respect to a heuristic cost function. 

The performance basically lies in how good the cost function is. 

Numerous improvements have been developed: pruning of non-

promising branches (Sun et al., 1994; Reyes-Moro et al., 2002), 

backtracking limitation (Xiong & Zhou, 1998), determination of 

lower bounds for the makespan (Jeng & Chen, 1998), best first search 

with backtracking and heuristic (Wang Q & Z, 2012) or dynamic 

programming (Zhang et al., 2005). On the other hand, some 

contributions are issued from the supervisory control methods that 

have been developed (Ramadge & Wonham, 1987; Basile et al., 

2013) in order to avoid forbidden markings, in particular deadlock 

markings. Supervisory control is mainly based on the addition of 

generalized mutual exclusion constraints over the initial 

unconstrained PN model and these constraints are usually 

implemented with monitor places. A few results also combine 

scheduling and supervisory control in the same approach: search in 

the partial reachability graph (Lei et al., 2014), genetic algorithms 

(Abdallah et al., 2002) and heuristic functions based on the firing 

vector (Jeng & Chen, 1998) have been studied. But a common 

drawback of all these approaches is that they require a large 

computational effort and are time consuming. They are definitively 

not suitable for real time control or reconfiguration. 

This work takes place in this context. It proposes a method for 

untimed PNs that incrementally computes deadlock-free schedules 

with control sequences that reach the reference state from the initial 

one, avoiding the forbidden states with a length or duration that is 

minimal or approaches the minimal length or duration. The method is 

inspired from model predictive control (MPC) approach. As a 

consequence, it is robust to perturbations induced by the firing of 

uncontrollable transitions because the control actions to apply are 

updated at each step. The approach is based on a partial exploration 

of the PN reachability graph but limits this exploration to the 

neighborhood of the current marking. For that purpose a criterion 

based on the evaluation of the number of firings or duration required 

to reach the reference from the final nodes of the graph is combined 

with a criterion that computes exactly the number of firings or the 

duration to reach the final nodes from the root of the graph. The 

present work improves our previous contributions in untimed 

(Lefebvre & Leclercq, 2015) context, where the path to the reference 

was computed according to an Euclidean distance. 

The paper is organized as follows. In Section 2, PN systems and 

control problems are introduced. Section 3 presents an algorithm to 

approach minimal length firing sequences. Section 4 sums up the 

conclusions and perspectives.  

2. Petri net systems 

2.1. Petri nets 

A PN structure is defined as G = <P, T, WPR, WPO>, where P = {P1,…, 

Pn} is a set of n places and T = {T1,…, Tq} is a set of q transitions of 

labels {1,...,q}, WPO  (N) nq and WPR  (N) nq are the post and pre 

incidence matrices (N is the set of non-negative integer numbers), and 

W = WPO – WPR is the incidence matrix. <G, MI > is a PN system with 

initial marking MI and M  (N) n represents the PN marking vector. 

The enabling degree of transition Tj at marking M is given by nj(M): 

 

nj(M) = min{mk / wPR
kj : Pk  °Tj} (1) 

 

where °Tj stands for the set of Tj upstream places, mk is the marking 

of place Pk, wPR
kj is the entry of matrix WPR in row k and column j. A 
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models. On the one hand, the main contributions to that problem have 

been provided by some adaptations of the Dijkstra and A* algorithms 

to the PN (Chretienne, 1986; Lee & DiCesare, 1994). Such algorithms 

are suitable to partially explores the reachability graph of the net, and 

generate efficient schedules with respect to a heuristic cost function. 

The performance basically lies in how good the cost function is. 

Numerous improvements have been developed: pruning of non-

promising branches (Sun et al., 1994; Reyes-Moro et al., 2002), 

backtracking limitation (Xiong & Zhou, 1998), determination of 

lower bounds for the makespan (Jeng & Chen, 1998), best first search 

with backtracking and heuristic (Wang Q & Z, 2012) or dynamic 

programming (Zhang et al., 2005). On the other hand, some 

contributions are issued from the supervisory control methods that 

have been developed (Ramadge & Wonham, 1987; Basile et al., 

2013) in order to avoid forbidden markings, in particular deadlock 

markings. Supervisory control is mainly based on the addition of 

generalized mutual exclusion constraints over the initial 

unconstrained PN model and these constraints are usually 

implemented with monitor places. A few results also combine 

scheduling and supervisory control in the same approach: search in 

the partial reachability graph (Lei et al., 2014), genetic algorithms 

(Abdallah et al., 2002) and heuristic functions based on the firing 

vector (Jeng & Chen, 1998) have been studied. But a common 

drawback of all these approaches is that they require a large 

computational effort and are time consuming. They are definitively 

not suitable for real time control or reconfiguration. 

This work takes place in this context. It proposes a method for 

untimed PNs that incrementally computes deadlock-free schedules 

with control sequences that reach the reference state from the initial 

one, avoiding the forbidden states with a length or duration that is 

minimal or approaches the minimal length or duration. The method is 

inspired from model predictive control (MPC) approach. As a 

consequence, it is robust to perturbations induced by the firing of 

uncontrollable transitions because the control actions to apply are 

updated at each step. The approach is based on a partial exploration 

of the PN reachability graph but limits this exploration to the 

neighborhood of the current marking. For that purpose a criterion 

based on the evaluation of the number of firings or duration required 

to reach the reference from the final nodes of the graph is combined 

with a criterion that computes exactly the number of firings or the 

duration to reach the final nodes from the root of the graph. The 

present work improves our previous contributions in untimed 

(Lefebvre & Leclercq, 2015) context, where the path to the reference 

was computed according to an Euclidean distance. 

The paper is organized as follows. In Section 2, PN systems and 

control problems are introduced. Section 3 presents an algorithm to 

approach minimal length firing sequences. Section 4 sums up the 

conclusions and perspectives.  

2. Petri net systems 

2.1. Petri nets 

A PN structure is defined as G = <P, T, WPR, WPO>, where P = {P1,…, 

Pn} is a set of n places and T = {T1,…, Tq} is a set of q transitions of 

labels {1,...,q}, WPO  (N) nq and WPR  (N) nq are the post and pre 

incidence matrices (N is the set of non-negative integer numbers), and 

W = WPO – WPR is the incidence matrix. <G, MI > is a PN system with 

initial marking MI and M  (N) n represents the PN marking vector. 

The enabling degree of transition Tj at marking M is given by nj(M): 

 

nj(M) = min{mk / wPR
kj : Pk  °Tj} (1) 

 

where °Tj stands for the set of Tj upstream places, mk is the marking 

of place Pk, wPR
kj is the entry of matrix WPR in row k and column j. A 
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transition Tj is enabled at marking M if and only if (iff) nj(M) > 0, this 

is denoted as M [Tj  >. The amount in which Tj fires is an integer  

that satisfies 0 <   nj(M) and the marking varies according to M = 

M’ – M = .W(:, j), where W(:, j) is the column j of incidence matrix. 

This is denoted by M [Tj > M’ or by M’ = M +.W.Xj where Xj is the 

firing count vector of transition Tj (David & Alla, 1992). An untimed 

firing sequence  fired at marking MI is defined as  = 

T(j1)T(j2)…T(jh) where j1,... jh are the labels of the transitions. X() is 

the firing count vector associated to , || = ||X()||1 = h is the length 

of  (|| . ||1 stand for the 1-norm), and  =  stands for the empty 

sequence. When  and ’ are two sequences,  ’ stands for the 

concatenation of  and ’. The untimed firing sequence  fired at M 

leads to the untimed marking trajectory (,M): 

 

(,M) = M [T(j1) > M(1)…. M(h-1) [T(jh) > Mref. (2) 

 

where M(1),...,M(h-1) are the intermediate markings and Mref is the 

final marking. A marking M is said reachable from initial marking MI 

if there exists a firing sequence  such that (s.t.) MI [ >M and  is 

said feasible at MI. R(G, MI) is the set of all reachable markings from 

MI.  

2.3. Control design for PNs and TPNs 

For control issues, the set of transitions T is divided into 2 disjoint 

subsets TC, and TNC such that T = TC  TNC. TC is the subset of qC 

controllable transitions, and TNC the subset of qNC uncontrollable 

transitions. The firing of controllable transitions that are enabled can 

be enforced or avoided by the controller whereas the firing of 

uncontrollable transitions cannot be driven by the controller. R(GC, 

MI)  R(G, MI) is the set of all reachable markings from initial 

marking MI by firing only controllable transitions and GC = <P, TC, 

WPR_C, WPO_C> where WPR_C, WPO_C are extracted from matrices WPR 

and WPO by considering only the controllable transitions. Depending 

on the control application, some forbidden markings may be also 

specified. For this purpose, the function LEGAL is defined for any 

marking M  R(GC, MI) as LEGAL(M) = 0 if the marking is forbidden 

else LEGAL(M) = 1 and RL(GC, MI)  R(GC, MI) is the set of markings 

that are legal. The objective of the proposed control design is to reach 

a reference marking Mref  RL(GC, MI) starting from initial marking 

MI with a trajectory of minimal length (for PNs) or minimal duration 

(for TPNs) that has no uncontrollable transition and that visits no 

forbidden marking.  

3. Model predictive control for untimed Petri nets 

The basic idea of MPC is to anticipate the evolution of the system in 

order to achieve the control objective. At each step, a cost function is 

minimized, possibly under some constraints. A sequence of control 

actions is obtained. The first action of this sequence is applied and the 

prediction starts again from the new state reached by the system 

(Richalet et al., 1978; Camacho & Bordons, 2007).  

3.1. Cost function based on Euclidean distance 

In our previous works, an adaptation of the Dijkstra algorithm has 

been used to compute the set of legal marking trajectories with 

minimal length H* from MI to Mref when only controllable transitions 

are fired. This algorithm was based on a partial exploration of the PN 

reachability graph so that this subgraph rooted in MI includes only 

legal markings, reaches Mref and has the smallest depth (Lefebvre & 

Leclercq, 2015). The main difficulty with this algorithm is the 

exponential complexity with respect to (wrt) the depth of the 

exploration: the method is time consuming and not acceptable when 

the markings MI and Mref are far from each other. In order to overcome 

this difficulty the partial exploration of reachability graphs has been 

combined with a model predictive control (MPC) approach based on 

the minimization of the cost function JEucl:  

JEucl(M,Mref) = (M - Mref)T.In.(M - Mref) (4) 

 

that corresponds to the Euclidean distance from the marking M to the 

reference Mref in marking space (In stands for the identity matrix of 

dimension n x n). Sufficient conditions have been stated so that the 

proposed method converges to the reference (Lefebvre & Leclercq, 

2015) but, in comparison with the exhaustive search, optimality 

cannot be ensured and near minimal length sequences are obtained 

(instead of minimal ones). One reason that explains sub-optimality is 

that the Euclidean distance in marking space does not always explain 

how “far” two markings are in terms of firing sequences. Moreover 

with criterion (4), the marking may be attracted by local minima that 

are due to hill-climbing phases (i.e. phases during which the distance 

to reference necessarily increases before it decreases). In the next 

section, a more efficient cost function is proposed. 

3.2. Cost function based on the remaining firing count vector 

In this section, the criterion (4) is replaced by an estimation of the 

number of firings required to reach the reference Mref from the 

marking M. This estimation is based on the computation of the firing 

count vector X that satisfies Mref – M = W.X according to an integer 

optimization problem. For that purpose let us first detail a 

transformation of the incidence matrix with Proposition 1: 

Proposition 1: Let consider a PN structure G = <P, T, WPR, WPO> 

with W = WPO – WPR  (Z) nq (Z is the set of positive and negative 

integer numbers) of rank r. There exists a regular matrix PL  (Z) nn 

and a regular permutation matrix PR  {0,1} qq such that: 

𝑊𝑊′ = 𝑃𝑃𝐿𝐿. 𝑊𝑊. 𝑃𝑃𝑅𝑅 = (𝑊𝑊11 𝑊𝑊12
𝑊𝑊21 𝑊𝑊22

)  (5) 

where W11 =  (Z) rr is an integer regular (i.e. of rank r) upper 

triangular matrix, W21 = 0(n-r)r and W22 = 0(n-r)(q-r) (i.e. zero matrices 

of appropriate dimensions).  

 

Proof: the proof consists in the iterative construction of the regular 

matrices PL  (Z) nn and PR  {0,1}qq. Let w1
min = wi*j* such that 

|wi*j*| = min (|wij| : i = 1,…,n, j = 1,…,q). There exists two permutation 

matrices Pleft1  {0,1} nn and Pright1  {0,1} qq such that w1
min is 

placed in the upper left corner of matrix Pleft1.W.Pright1. There also 

exists a regular diagonal matrix Dleft1: 

𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙1 = (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤1
𝑚𝑚𝑚𝑚𝑚𝑚) 0

0 𝐼𝐼𝑛𝑛−1
)  

with sign(x) = 1 if x > 0, sign(x) = 0 if x = 0 and sign(x) = -1 if x < 0. 

Finally there exists a lower triangular regular matrix Cleft1: 

𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙1 = (𝛼𝛼1 0
𝑋𝑋 𝐼𝐼𝑛𝑛−1

)  

with 1 > 0, such that W1 = Cleft1.Dleft1.Pleft1.W.Pright1 = PL1.W.PR1 with: 

𝑊𝑊1 = (𝑊𝑊111 𝑊𝑊112
𝑊𝑊121 𝑊𝑊122

)  

and W1
11 = w1

min  (Z)11 of rank 1, W1
12 =  (Z) 1(n-1), W1

21 is a zero 

matrix of dimensions (n-1)x1 and W1
22  (Z) (n-1)x(q-1) is of rank r-1. 

The matrix PL1  (Z) nn is regular and PR1  {0,1} qq is a permutation 

matrix. The same transformation is repeated r times so that finally (5) 

holds with: 
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