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1. INTRODUCTION

This paper considers a resource allocation problem for two
populations that can be thought of as predator and prey,
or consumer and food resource, as in sheep and grassland
(Noy-Meir (1978),Woodward and Wake (1994)). A similar
model also applies to fisheries (Chakraborty et al. (2013)).
We will denote the populations simply by R for the
resource, and S (for Sheep or Species) for the consumers.
In the absence of a delay, we assume the following base
model.
1. The resource shows a natural depletion or decay with
rate µ (the natural death rate of prey) and a growth rate
c if fully invested, i.e., if all grass seeds go to replenishing
the field.
2. The consumer population, S, has a natural death rate
ν which is offset by a growth proportional to the resource
allocated.
Hence the model leads to the bilinear system

Ṙ(t) =−µR(t) + cR(t)u(t) (1)

Ṡ(t) =−νS(t) + ωR(t)(1− u(t)), (2)

where the control 0 ≤ u(t) ≤ 1 is the allocation of the
resource. The parameters ω and c take different efficiencies
of the allocated resource into account. It is desired to
maximize S either at a fixed or a free final time. Note
that this model differs from the traditional predator-prey
model which has a mass action form in the S equation.
More generally, one may consider multiple population
models with several resources of the form
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d

dt

[
xr(t)
xs(t)

]
= F (xr(t), xs(t)) + [C ◦ U(t)]xr(t) (3)

where dimxr = nr, dimxs = ns and where U ∈
[0, 1](nr+ns)×nr is a resource allocation matrix with entries
uij , the allocation of resource xrj for the growth of xi. C is
the efficiency matrix Cij indicating how a unit allocation
of xj contributes to the rate of xi. The operation ◦ is
the Hadamard product, defined by (C ◦ U)ij = CijUij .
The matrix U is normalized by

∑
i uij = 1. Thus, if

1 = col(1, . . . , 1) of appropriate dimension, then the con-
trol matrix satisfies

1
⊤U = 1

⊤.

The above models are only valid if there are no delays
from allocation to consumption. Typically, however, such
an assumption is not realistic. For simplicity we consider
the case of a single delay. This changes the model to

d

dt

[
xr(t)
xs(t)

]
= F (xr(t), xs(t))+[C ◦U(t−τ)]xr(t−τ). (4)

In Section 2, we derive necessary conditions for the general
optimal allocation problem (4), but with a nondelayed
representation, v(t) = vecU(t − τ), for the vector of all
controls.

ẋ(t) = f(x(t), x(t − τ(t)), v(t)).

The objective here is to maximize some function of the
population at a fixed or free terminal time and aug-
mented with an integral over time. Thus let Φ(x(T ), T ) +∫ T

0 L(x(t), v(t)) dt be this performance index. Necessary
conditions for optimality and the maximum principle for
systems with delay have been presented earlier, see for
instance Halanay (1968),Bien and Chyung (1980), Pa-
tel et al. (1982), Bokov (2010), and Malek-Zavarei and
Jamshidi (1987). However, the analysis in these references
is either very lengthy or restrictive with respect to the
model class or the admissible controls. We present a more
streamlined derivation based on first principles, which can
be made rigorous easily. We believe that such a derivation

13th IFAC Workshop on Time Delay Systems
June 22-24, 2016. Istanbul, Turkey

Copyright © 2016 IFAC 1

Delayed Resource Allocation Optimization

with Applications in Population Dynamics ⋆

Erik I. Verriest
∗
Gunther Dirr

∗∗
Uwe Helmke

∗∗∗

∗ School of ECE, Georgia Institute of Technology, Atlanta, GA,USA
(email: erik.verriest@ece.gatech.edu).

∗∗ Institute of Mathematics, University of Würzburg, 97074
Würzburg,Germany (email: dirr@mathematik.uni-wuerzburg.de)

∗∗∗ Institute of Mathematics, University of Würzburg, 97074
Würzburg,Germany (email: helmke@mathematik.uni-wuerzburg.de)

Abstract: The contribution of this paper is twofold. First a simplified derivation of the
maximum principle for optimal control problems with delay is presented based on first principles.
Then the result is applied to an investigation into the dynamic optimal resource allocation
problem in population dynamics involving delayed action.

Keywords: delay system, optimal control resource allocation

1. INTRODUCTION

This paper considers a resource allocation problem for two
populations that can be thought of as predator and prey,
or consumer and food resource, as in sheep and grassland
(Noy-Meir (1978),Woodward and Wake (1994)). A similar
model also applies to fisheries (Chakraborty et al. (2013)).
We will denote the populations simply by R for the
resource, and S (for Sheep or Species) for the consumers.
In the absence of a delay, we assume the following base
model.
1. The resource shows a natural depletion or decay with
rate µ (the natural death rate of prey) and a growth rate
c if fully invested, i.e., if all grass seeds go to replenishing
the field.
2. The consumer population, S, has a natural death rate
ν which is offset by a growth proportional to the resource
allocated.
Hence the model leads to the bilinear system
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the case of a single delay. This changes the model to

d

dt

[
xr(t)
xs(t)

]
= F (xr(t), xs(t))+[C ◦U(t−τ)]xr(t−τ). (4)

In Section 2, we derive necessary conditions for the general
optimal allocation problem (4), but with a nondelayed
representation, v(t) = vecU(t − τ), for the vector of all
controls.

ẋ(t) = f(x(t), x(t − τ(t)), v(t)).

The objective here is to maximize some function of the
population at a fixed or free terminal time and aug-
mented with an integral over time. Thus let Φ(x(T ), T ) +∫ T

0 L(x(t), v(t)) dt be this performance index. Necessary
conditions for optimality and the maximum principle for
systems with delay have been presented earlier, see for
instance Halanay (1968),Bien and Chyung (1980), Pa-
tel et al. (1982), Bokov (2010), and Malek-Zavarei and
Jamshidi (1987). However, the analysis in these references
is either very lengthy or restrictive with respect to the
model class or the admissible controls. We present a more
streamlined derivation based on first principles, which can
be made rigorous easily. We believe that such a derivation
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is also more pedagogical and illuminating than the stan-
dard approach where the adjoint equations enter ab initio
in a more obscure way. Full details will appear elsewhere.
In Section 3, we consider in detail a simple but relevant
model for social insect population dynamics and sheep
farming. This work adds to our past work on delay models
in ecology and epidemiology (Verriest and Pepe (2007),
Briat and Verriest (2009)).

2. OPTIMAL CONTROL FOR SMOOTH SYSTEMS
WITH DELAY

Let
ẋ(t) = f(x(t), x(t − τ), v(t)),

with initial data x(θ) = φ(θ), θ ∈ [−τ, 0] given and the
terminal state x(T ) unspecified. Let the objective function,
to be maximized, be

J = Φ(x(T ), T ) +

∫ T

0

L(x(t), v(t)) dt,

whose final time T ≥ 0 may be specified or unspecified.
For greater generality, we assume the latter.

The simple perturbation approach, assuming that f(x, y, v),
L(x, v), and Φ(x, t) are smooth functions of x, y, v and
t, is only applicable when the control is not constrained.
The derivation that follows needs to allow for large con-
trol perturbations and cannot rely on simple first order
perturbation terms with respect to the control.

Suppose the optimal performance J0 is given by an optimal
control v0, which induces the state x0, and an optimal
terminal time T0 ≥ 0.

By definition of global optimality, if v is any other admis-
sible control function, and T any other terminal time, then
the induced state x must result in an inferior (or equal)
performance. Thus J0−J ≥ 0 or, for all admissible controls
v, and for all T ,

Φ(x0(T0), T0) +

∫ T0

0

L(x0(t), v0(t)) dt

−Φ(x(T ), T )−

∫ T

0

L(x(t), v(t)) dt ≥ 0. (5)

But x0 and x respectively satisfy

ẋ0(t) = f(x0(t), x0(t− τ), v0(t)) (6)

ẋ(t) = f(x(t), x(t − τ), v(t)) (7)

with the same initial data, φ. Hence, the left hand side of
(5) will not change if λ⊤(t)[f(x0(t), x0(t−τ), v0(t))− ẋ0(t)]
is added to the integrand in the first integral, where λ is
for now a completely arbitrary function. Likewise we add
λ⊤(t)[f(x(t), x(t− τ), v(t))− ẋ(t)] to the integrand of the
second integral, noting that the same Lagrange multiplier
λ(t) is chosen. Hence the necessary condition (5) may be
replaced by

Φ(x0(T0), T0)−Φ(x(T ), T )+
∫

T0

0

L(x0(t), v0(t)) + λ⊤(t)(f(x0(t), x0(t − τ), v0(t)) − ẋ0(t)) dt

−

∫
T

0

L(x(t), v(t)) + λ⊤(t)(f(x(t), x(t− τ), v(t)) − ẋ(t)) dt ≥ 0.

Restrict now the function λ to be differentiable. Integrat-
ing by parts yields the equivalent condition

Φ(x0(T0), T0)− Φ(x(T ), T )−λ⊤(T0)x0(T0) + λ⊤(T )x(T )+
∫

T0

0

L(x0(t), v0(t)) + λ⊤(t)f(x0(t), x0(t−τ), v0(t)) + λ̇⊤(t)x0(t) dt

−

∫
T0

0

L(x(t), v(t)) + λ⊤(t)f(x(t), x(t−τ), v(t)) + λ̇⊤(t)x(t) dt ≥ 0.

Defining the Hamiltonian associated with this problem by

H(x(t), x(t − τ), v(t), λ(t)) :=

L(x(t), v(t)) + λ⊤(t)f(x(t), x(t − τ), v(t)), (8)

the necessary condition for optimality states then that
for all T and for all admissible controls v(·) defined on
(0,max(T, T0)) it holds that

Φ(x0(T0), T0)−Φ(x(T ), T )−λ⊤(T0)x0(T0)+λ⊤(T )x(T )

+

∫ T0

0

[H(x0(t), x0(t− τ), v0(t), λ(t)) + λ̇⊤(t)x0(t)] dt

−

∫ T

0

[H(x(t), x(t − τ), v(t), λ(t)) + λ̇⊤(t)x(t)] dt ≥ 0.

In particular, for T in a neighborhood of T0, we set
T = T0 + ǫ, and for sufficiently small ǫ, we obtain by a
first order Riemann sum approximation

Φ(x0(T0), T0)−Φ(x(T ), T )−λ⊤(T0)x0(T0)+λ⊤(T )x(T )+
∫ T0

0

[H(x0(t), x0(t−τ), v0(t), λ(t)) +

−H(x(t), x(t−τ), v(t), λ(t)) + λ̇⊤(t)(x0(t)− x(t))] dt

−ǫ[H(x(T0), x(T0 − τ), v(T0), λ(T0)) + λ̇⊤(T0)x(T0))]≥0.

For simplicity of notation, let y0(t) and y(t) respectively
represent x0(t−τ) and x(t−τ). The integrand of the above
integral term is then (suppressing the time argument)

I := H(x0, y0, v0, λ)−H(x, y, v, λ) + λ̇⊤(x0 − x).

which may be transformed by adding and subtracting
H(x, y, v0, λ),

I = [H(x0, y0, v0, λ)−H(x, y, v0, λ) + λ̇⊤(x0 − x)]

+[H(x, y, v0, λ)−H(x, y, v, λ)],

into an expression involving v0 and one involving fixed x
and y. Likewise the non-integral terms are rewritten as

Φ(x0(T0), T0)−Φ(x(T ), T )−λ⊤(T0)x0(T0)+λ⊤(T )x(T )

= [Φ(x0(T0), T0)−Φ(x(T0), T0)−λ⊤(T0)(x0(T0)−x(T0))]

+[Φ(x(T0), T0)−Φ(x(T ), T )+λ⊤(T )x(T )−λ⊤(T0)x(T0)].

These steps are the key to derive the maximum principle.
Since T = T0 + ǫ, and in view of the differentiability of x
and λ, this yields up to first order in ǫ the approximation

Φ(x0(T0), T0)−Φ(x(T0), T0)−λ⊤(T0)(x0(T0)−x(T0))

−ǫ

[
∂Φ(x(T0), T0)

∂x
ẋ(T0) +

∂Φ(x(T0), T0)

∂T
+

−λ̇⊤(T0)x(T0)− λ⊤(T0)ẋ(T0))
]
.
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