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Abstract: Due to periodic sampling, linear sampled-data systems are a subclass of linear
continuous periodic systems, even in the case, when all other elements are time invariant.
Therefore, the well-established methods for LTI systems cannot be applied. Owing to the
great practical importance of sampled-data control systems, various approaches for the rigorous
description of those systems are known. Moreover, a lot of methods have been developed, that are
able to yield rigorous solutions for numerous control and optimization problems. The application
of those methods need representations in certain standard forms. Often, it is not clear, whether
a given system can be transformed into a standard form or not. The paper considers this
question for the standard sampled-data system with delay, for which numerous methods and
tools are available, if the system belongs to the subclass with model structure. The paper
provides necessary and sufficient conditions for a SD system with delay in standard structure to
belong to this important subclass. The proof is given on basis of the parametric transfer matrix
concept, which is at present the only one that can handle problems, where both difficulties -
sampling and arbitrary time-delay - occur at the same time.
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1. INTRODUCTION

Sampled-data (SD) systems are characterized by the pres-
ence of as well continuous as discrete-time elements. Due to
the massive introduction of digital controllers and filters,
SD systems are of great practical importance. In case
of linear time-invariant processes and controllers, there
exist two simple approaches for analysis and design of SD
systems. The first one is called quasi-continuous approach.
Here the system is considered as purely continuous system,
and e.g. the controller is design as a continuous one. After
that the continuous controller is substituted by a digital
approximation, e.g. by Tustin’s formula. The second ap-
proach is a pure discrete one. Here the sampled process
is substituted by a discrete model. Then analysis and
design are completely done in discrete time, e.g. by using
z-transforms. However, in this case no information about
the intersample behavior is provided. Detailed descriptions
of both approaches can be found in standard textbooks,
e.g. Astrém and Wittenmark [1997], Franklin et al. [2002].
Nevertheless, both approaches are approximations, and
already in simple cases the results can be unusable, Rosen-
wasser and Lampe [2000], Polyakov et al. [2002].

Therefore, since the beginning of the 1990th, new methods
with exact and complete information have been developed
for SD systems. This methods are referred under the
concept of sampled-data in a stricter sense. However, due
to the periodic sampling, a SD system is a continuous
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periodic system, and the standard methods for LTT sys-
tems are no longer applicable. Three approaches have been
prepared for analysis and design of SD control systems.
The lifting technique is based on state space and implies a
transfer to representations with infinite input and output
spaces, Bamieh and Pearson [1992]. Various control and
optimization problems for SD systems have been solved
by lifting, e.g. Chen and Francis [1995]. A corresponding
approach in the frequency domain is called FR operator,
Hagiwara and Araki [1995], which also leads to operations
with infinite dimensional matrices. Due to the infinite
dimension of the transformations, both approaches have
problems with time-delay, which brings another infinite
order. The third approach bases on the parametric transfer
function (PTF) concept and it is applied in the present
paper. The PTF is a generalization of the well-known
ordinary transfer function for LTI systems to the case
of linear time-varying systems. For MIMO SD systems it
operates with parametric transfer matrices (PTM), but
these matrices are of finite dimension. The concept has
proved to solve manifold control problems for SD systems
with delay, Lampe and Rosenwasser [2010, 2013, 2015],
when the system is described as a certain standard model.
The paper at hand investigates, whether a SD system with
delay can be brought into this form.

2. SYSTEM DESCRIPTION AND PROBLEM

1) In Lampe and Rosenwasser [2010, 2013, 2015] the sub-
ject of investigation was the standard model of sampled-
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data (SD) system with delay, where the continuous process
was described by the relations

du(t)
dt

y(t) = Ca(t)u(t).

Herein y is the process output vector, v is the process
state vector, x(t) is the vector of the external excitation,
and u(t) is the control vector. Moreover, A, By, By, Co are
constant real matrices of appropriate size, and 7,7y are
nonnegative real constants.

= Av(t) + B1z(t — 1) + Bau(t — 72),
(1)

Assume that process (1) is affected by a multivariable hold,
described by

u(t) = h(t — kT)pp, KT <t < (k+1)T. (2)

Herein, T is the sampling period, and h(t) is a matrix,
which determines the shape of the control impulses, and its
entries are functions of bounded variation on the interval
0 <t < T. Moreover, in (2) the quantity vy, is the vector
control sequence, which is determined as solution of the
difference equation

a(O)vr = B(C) Yk,

where

Yk = y(kT)v (k =0,=£1,.. ')’ (3)

a(@)=ag+ a1 +...+a,(’,
B(C)=Po+ B1¢+ ... + B¢

are polynomial matrices in ( - the backward shift operator,
Astrom and Wittenmark [1997], with the effect

Chk = Vp—1,  CUk = Yk—1- (5)
Assume that the matrices a(¢) and 5(¢) are left coprime
in the sense of Kailath [1980].

det ag # 0,
’ (4)

As output of the SD system, we consider
z(t) = Cru(t — 713) + Du(t — 70 — 73), (6)

where Cy, D are constant matrices, and 73 is a real con-
stant, which also can take negative values.

The totality of equations (1) - (6) define the multivariable
SD system with delay S;, which is called standard model
of SD system with delay.

2) As was stated in Lampe and Rosenwasser [2010], when
applying the Lapalce transformation, the standard model
S, can be described by the equations with the operator

p2 4
z(t) = K7 (p)x(t) + L. (p)u(t), -
y(t) = M- (p)z(t) + N-(p)u(?),

where

K (p) = K(p)e™™, Lr(p) = L(p)e™™,
M:(p) = M(p)e "™, N:(p) = N(p)e P™.

The matrices K (p), L(p), M(p), N(p) are rational matri-
ces, determined by the relations

(®)

K(p)=Ci(ply — A)"' By,

L(p) =Ci(pl, — A) 'By + D, (9)
M (p) = Co(ply, — A) "' By,

N(p)=Ca(ply — A)"'Bo,

where I, is the x x x identity matrix. Moreover, in (8)
TK,TL,TM, TN are constants obtained by the relations

TK =T1+ 73, TL="T2+7T3,

(10)

™ = T1, TN = T2.

When we interprete (2) - (4) as a computer, the standard

model S; can be configured to the scheme shown in Fig. 1,
which is called standard structure.

xT 21 z

K:(p) ——O——~
n =2

M- (p)

L (p)

u

Y2 Y

N-(p) O

Computer

Fig. 1. SD system with delay in standard structure

3) As was shown in Lampe and Rosenwasser [2010], that
under certain restrictions, which are fulfilled in paractical
applications, for x(t) = eM I, where \ is a complex
parameter, for all A excluding a certain countable set, there
exists a unique matrix solution of equations (1) - (6), in
which

y(\t) =MW\ 1), Wy t) = W\t +T),
v\ t) =MW (N 1), Wi\ t) = Wee (At +T),
u(\t) =MW\ 1), Wae(Mt) = W (Nt +T), (11)
M) =MW (N 1), Wew(At) = Weu (At +T),

Ur(A) =M g1 ().

Here Wyz (A1), Woz(A 1), Wuz(A 1), Woz(A t) are ma-
trices of suitable size. Below, these matrices are called
parametric transfer matrices (PTM) from input x(¢) to
the outputs y, v, u, z, respectively.

4) In Lampe and Rosenwasser [2010] it was shown that the

PTM W, (A, t) has the form
W\ 1) = e 2L ¢p (TNt — )Ry (A M, (\) + K- (),

(12)
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