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Abstract: In this paper, we present a new manner for computing the so-called new form of
the functional of complete type for neutral type time-delay systems without assumptions of
continuity and differentiability on the initial function. It is obtained by using a new Cauchy
formula. We present briefly the necessary stability conditions depending on the delay Lyapunov

matrix that this result makes possible to prove.
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1. INTRODUCTION

The study of linear time delay systems in the framework of
Lyapunov-Krasovskii functionals with prescribed deriva-
tive was initiated by Repin (1965), and its first use for
studying neutral type delay systems remount to the work
of Castelan and Infante (1979). A significant formalization
of the approach and substantial advances can be found
in the contributions Rodriguez et al. (2004), Kharitonov
(2005), Kharitonov (2013). In particular, the central role of
the delay Lyapunov matrix is clarified, and the addition
of a new term to the functional (which is then called of
complete type) allows showing it admits a quadratic lower
bound. This last property leads to robust stability bounds,
Rodriguez et al. (2004), and exponential estimates of the
system response Kharitonov (2005). Other results are the
determination of critical frequencies and/or parameters
Ochoa et al. (2013), and the extension of the predictor
control scheme for neutral type systems with state and
input delay Kharitonov (2015).

The procedure for constructing an explicit expression of
the functional under the assumption that the system is
exponentially stable, consists basically of two steps: (i)
the prescription of a negative quadratic time derivative
of the functional; (ii) its integration and the substitution
of the Cauchy formula. In the early results in Bellman
and Cooke (1963), assumption of differentiability of initial
functions leads to a Cauchy formula depending on the
derivative of the initial function. The integration by parts
of the functional introduced in Rodriguez et al. (2004)
allowed to present in Kharitonov (2005), under the same
assumptions for the initial conditions, a new expression
of the functional that avoids the derivative of the initial
function, but contains the first and the second derivative
of the delay Lyapunov matrix.
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In this contribution, we present a new Cauchy formula that
requires neither the differentiability, nor even the conti-
nuity of the initial function, and by the above described
procedure, we arrive at the expression of the functional
obtained in Kharitonov (2005). This subtlety is crucial
for extending the necessary stability conditions depending
on the delay Lyapunov matrix obtained for the pointwise
delay case in Egorov and Mondié (2014), to the case of neu-
tral type delay systems presented in Gomez et al. (2015),
because an important element of the proof consists in using
a particular class of initial functions that depends on the
neutral type delay system fundamental matrix, which is
not continuous at values multiples of the delay.

The paper is organized as follows. In Section 2, we provide
basic facts of the fundamental and Lyapunov matrices
for neutral type delay systems. The new Cauchy formula
is proven in Section 3 and it is shown that the Cauchy
formula introduced in Bellman and Cooke (1963) is a par-
ticular case of the new one. In Section 4, we use the Cauchy
formula for computing the functional. Finally, in Section
5, we present without proof and illustrate the necessary
stability conditions that motivate the development of the
results, and we conclude with some comments.

Notation: The Euclidian norm for vectors is represented by
Ill. The set O(T) is defined as O(T) = [0, c0)\{T+ih}2,.
For the derivative of the function F(-) with respect to the
unique argument we use F'(-). The notation a.e. means
“almost everywhere”. {A;; }:’jzl denotes a square matriz,
where A;; (4,5 = 1,...,7) is the element in the i-th row
and the j-th column, and Q > 0 denotes a positive defi-
nite matriz. The space of R™-valued piecewise continuous
functions on [—h,0] is denoted by PC([—h,0],R™) and
the right hand-side (left hand-side) limit lim._,q f(t + |¢])
(im0 f(t — |e])) is represented by f(t +0) (f(t —0)).
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2. PRELIMINARIES

Let us consider a neutral type time-delay system

d

T (z(t) — Dx(t — h)) = Aox(t) + A1z(t — h), t >0, (1)
where h > 0 is the delay and D, Ay and A; are constant
matrices in R™*™. The initial function ¢(6), 0 € [—h, 0],

belongs to the space PC'™M)([—h,0],R™), i.e.,

(1) Y E PC([_h7O]7Rn>7

(2) the derivative ¢’ € C([—h,0]\ S,R"), where S is a
finite set,

(3) there exists a number @ such that ||¢'(0)| < @ for
every 0 € [—h,0]\ S.

The restriction of the solution x(¢, ) to the interval
[t — h,t] is denoted by
zi(p) : 0 = x(t+0,0), 0 €[—h,0].
From now on, we consider that the following assumptions
hold:

(1) The solution z(t, ¢) satisfies system (1) almost every-
where.

(2) The function x(t,¢) — Dx(t — h, ) is continuous on
[0,00) and differentiable for ¢ > 0 almost everywhere,
and the right-hand side derivative is assumed to exist
at t =0.

Definition 1. (Bellman and Cooke (1963)). System (1) is
said to be exponentially stable, if every solution of the
system satisfies the inequality
lz(t, @)l <ve™" sup ()], t >0,
0€[—h,0]
for o > 0and v > 1.

The fundamental matrix K (¢) of system (1) satisfies the
equation (see Bellman and Cooke (1963)) for ¢ > 0 almost
everywhere:

d

o (E() — K(t—h)D) = K(t)4do + K(t - h)A1,  (2)
with the initial conditions K(8) = 0 for § € [—h,0),
K (0) = 1, and the sewing condition:
K(t) — K(t — h)D is right-hand side continuous for ¢ > 0.
From the Laplace transform of equation (2) it is easy to
see that the fundamental matrix is also a solution of the
equation

d
pn (K(t)— DK(t—h)) =AoK(t)+ A1 K(t—h).
According to the definition, the fundamental matrix is
discontinuous at points vh, v = 0,1,2,.... The jumps are
described in the following lemma .
Lemma 1. (Bellman and Cooke (1963)). The fundamental
matrix K(¢t) has jumps at points vh, v = 0,1,2,... and
their size values are determined by
AK(vh) = D",

where AK(vh) = K(vh 4+ 0) — K(vh —0).

If system (1) is exponentially stable, the matrix function
U(r) = / KT WK (t+7)dt (3)
0

is defined as the delay Lyapunov matrix associated with
matrix W (see Rodriguez et al. (2004), Kharitonov (2005)).

The Lyapunov matrix is continuous for 7 € R (Lemma 6.3
in Kharitonov (2013)), continuously differentiable at £ #
jh, 5 =0,%1,..., and satisfies the following properties:

(1) Dynamic
d
£ —U(r —h)D
4 Wi -ve—np)
=U(1)Ao+U(r —h)A;, 7>0, ae., (4)
(2) Symmetry
UT(r)y=U(-7), 7>0, (5)
(3) Algebraic
ATU0) +U(0)Ag + ATU(h) + U(—h) A,
— (AJU(=h) + ATU(0)) D
— DT (U(h)Ag +U(0)A;) = —W. (6)
In Kharitonov (2013), it is shown that the algebraic
property can also be written as

—-W = AU'(0) — DT AU’(0)D,
where AU’(0) = U’ (+0) — U'(-0).
The jumps of the first derivative of the Lyapunov matrix
are characterized in the next lemma.
Lemma 2. (Kharitonov (2005)). The jump size values of
the first derivative of the Lyapunov matrix U(7) at points
7 =0,1,2,..., are given by

AU’(jh) = AU'(0)D?,

where AU’(jh) = U'(jh +0) — U'(jh — 0).
Remark 1. Due to the discontinuities of the fundamental
matrix K(t+7) at t; =jh—71,j=0,1,..,

! _ T i T
U(T)/O(T)K (W K (1 + )

+> KT (jh — T)WAK(jh), 7€ (=h,0)0 (0,h).
j=0
(7)
3. ANEW CAUCHY FORMULA

In this section, we present a new Cauchy formula of system
(1) given in terms of the fundamental matrix. It is shown
that this formula is a generalization of the one presented
in Bellman and Cooke (1963).

Lemma 3. Given an initial function ¢, the solution z(t, )
of system (1) is determined by

z(t, ) =K(t) (¢(0) — Dp(=h))

0
- /_h K(t—h—0)A10(0)do ®)

d 0
+ 4 (/ K(t—0— h)D(p(H)de) >0,
a\J_,
Proof. Integrating system (1) we get the expression

x(t) =Dz(t — h) + ¢(0) — Dp(—h) + Ao /Otsc(ﬁ)dG

t—h
A / 2(0)d0, t > 0.
—h

For £ € [0,t), we consider the term

£
J(t,€) = (K(t—€) — K(t — € — h)D) / £(6)do.
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