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Abstract: A rather common model of the synchronization is represented by several local oscillators
coupled to some (possibly distributed) transmission environment. This model goes back to Huygens.
If the transmission environment is represented by a one dimensional distributed parameter structure
(vibrating string in the mechanical case or an electric transmission line for electrical systems) then
some functional differential equations may be associated by integration along the characteristics.
Consequently, the synchronization of the two local oscillators can be analyzed as a problem of forced
oscillations for functional differential equations. In this paper two LC local nonlinear oscillators are
viewed as connected to a lossless LC transmission line of infinite length. This is the electrical analogue
of the Huygens like case where two nonlinear pendula are coupled to a vibrating string.
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1. INTRODUCTION AND PROBLEM STATEMENT

A. In the contemporary research on systems’ dynamics syn-
chronization plays a distinct role. Its importance is emphasized
in a more or less recent monograph Pikovsky et al. (2001)
where it is considered a universal concept in nonlinear science
(as its title states). It is not our purpose to elaborate on the
concept but just to indicate its place within the qualitative study
of dynamics. For instance, the standard example of Huygens is
concerned with two pendula hanging on a wall or on a system
of ropes that connect then thus “contributing” to their synchro-
nization (observed by Huygens himself). The theoretical gener-
alization of this old classical model is to consider oscillations in
the sense of Lagrange i.e. any dynamical system described by
ordinary differential equations (because Lagrange used to call
oscillation - any transient i.e. non-steady state evolution of a
system regardless it displays or not a periodic orbit). As a con-
sequence there were considered oscillations coupled through
diffusive or lattice structures Hale (1994, 1997). In the afore-
mentioned papers the oscillators had the property of displaying
a unique stable limit cycle accounting for a unique stable self-
sustained periodic oscillation. Under these circumstances the
frequencies and the phases of the oscillations may be viewed
as restricted to a torus and smaller the torus dimension is –
stronger is the synchronization Ermentrout and Koppell (1984);
Koppell and Ermentrout (1986).

Another source for building synchronization models is to con-
sider the coupling through the so called complex interactions
among which one can mention the nonlinear couplings – the
case of combustion modeling due to Kuramoto and Frank-
Kamenetskii, the Power Grids case or the morphogenetic model
of A. M. Turing – but also the linear distributed couplings
– with diffusion or with propagation Hale (2004); Lepri and
Pikovsky (2014). The linear couplings with delays may be also
considered here Earl and Strogatz (2003); Fox et al. (2001).

B. In this research we shall consider the synchronization prob-
lem suggested by Lepri and Pikovsky (2014), at its turn gener-
ated by the classical Huygens synchronization problem. In the

aforementioned paper, two nonlinear pendula without damping
are hanging on a loaded (i.e. having initial conditions) vibrating
string. Both undamped pendula have cyclic trajectories i.e. an
infinity of possible periodic solutions. It is shown that func-
tional differential equations of neutral type can be associated
and that the exchange of signals through the vibrating string is
inducing local dampings in the pendula. The cyclic motions are
replaced by a complex behavior of the overall system. This kind
of behavior can have several explanations that are valid simul-
taneously Lepri and Pikovsky (2014): periodicity of the initial
conditions of the vibrating string but also undamped modes
of the nonlinear overall system. At their turn these undamped
modes are a consequence of the fact that the resulting differ-
ence operator of the associated functional differential system of
neutral type is not strongly stable but only critically stable – a
specific aspect of almost all mechanical systems.

We shall consider here an electric analogue of the aforemen-
tioned mechanical systems: two LC oscillators having each a
tunnel diode are connected to a lossless LC transmission line
of infinite length. Each independent oscillator has a stable limit
cycle while the LC transmission line has periodic initial condi-
tions. Taking throughout the paper the approach of associating
functional differential equations by integrating along the char-
acteristics, what is left of it is structured as follows. First the
isolated oscillator is considered, recalling the fact that it has a
unique limit cycle which is orbitally stable Răsvan et al. (2008).
Next there is applied integration along the characteristics for the
boundary value problems that are modeling the structure with
two oscillators coupled to two the LC lossless transmission line
of the infinite length.

In this way a one to one correspondence is established between
the solutions of the boundary value problems and the solutions
of an associated system of functional differential equations of
neutral type Răsvan (2014). The problem of the synchroniza-
tion thus reduces to the problem of the forced oscillations for
the aforementioned system of neutral functional differential
equations. Here the frequency domain method of V.M. Popov
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Department of Automation and Electronics, University of Craiova, A.I.Cuza,
13, Craiova, RO-200585, Romania

(e-mail: {ddanciu, vrasvan}@automation.ucv.ro)

Abstract: A rather common model of the synchronization is represented by several local oscillators
coupled to some (possibly distributed) transmission environment. This model goes back to Huygens.
If the transmission environment is represented by a one dimensional distributed parameter structure
(vibrating string in the mechanical case or an electric transmission line for electrical systems) then
some functional differential equations may be associated by integration along the characteristics.
Consequently, the synchronization of the two local oscillators can be analyzed as a problem of forced
oscillations for functional differential equations. In this paper two LC local nonlinear oscillators are
viewed as connected to a lossless LC transmission line of infinite length. This is the electrical analogue
of the Huygens like case where two nonlinear pendula are coupled to a vibrating string.

Keywords: Synchronization, Nonlinear oscillators, LC transmission line, Popov criterion, Time delay

1. INTRODUCTION AND PROBLEM STATEMENT

A. In the contemporary research on systems’ dynamics syn-
chronization plays a distinct role. Its importance is emphasized
in a more or less recent monograph Pikovsky et al. (2001)
where it is considered a universal concept in nonlinear science
(as its title states). It is not our purpose to elaborate on the
concept but just to indicate its place within the qualitative study
of dynamics. For instance, the standard example of Huygens is
concerned with two pendula hanging on a wall or on a system
of ropes that connect then thus “contributing” to their synchro-
nization (observed by Huygens himself). The theoretical gener-
alization of this old classical model is to consider oscillations in
the sense of Lagrange i.e. any dynamical system described by
ordinary differential equations (because Lagrange used to call
oscillation - any transient i.e. non-steady state evolution of a
system regardless it displays or not a periodic orbit). As a con-
sequence there were considered oscillations coupled through
diffusive or lattice structures Hale (1994, 1997). In the afore-
mentioned papers the oscillators had the property of displaying
a unique stable limit cycle accounting for a unique stable self-
sustained periodic oscillation. Under these circumstances the
frequencies and the phases of the oscillations may be viewed
as restricted to a torus and smaller the torus dimension is –
stronger is the synchronization Ermentrout and Koppell (1984);
Koppell and Ermentrout (1986).

Another source for building synchronization models is to con-
sider the coupling through the so called complex interactions
among which one can mention the nonlinear couplings – the
case of combustion modeling due to Kuramoto and Frank-
Kamenetskii, the Power Grids case or the morphogenetic model
of A. M. Turing – but also the linear distributed couplings
– with diffusion or with propagation Hale (2004); Lepri and
Pikovsky (2014). The linear couplings with delays may be also
considered here Earl and Strogatz (2003); Fox et al. (2001).

B. In this research we shall consider the synchronization prob-
lem suggested by Lepri and Pikovsky (2014), at its turn gener-
ated by the classical Huygens synchronization problem. In the

aforementioned paper, two nonlinear pendula without damping
are hanging on a loaded (i.e. having initial conditions) vibrating
string. Both undamped pendula have cyclic trajectories i.e. an
infinity of possible periodic solutions. It is shown that func-
tional differential equations of neutral type can be associated
and that the exchange of signals through the vibrating string is
inducing local dampings in the pendula. The cyclic motions are
replaced by a complex behavior of the overall system. This kind
of behavior can have several explanations that are valid simul-
taneously Lepri and Pikovsky (2014): periodicity of the initial
conditions of the vibrating string but also undamped modes
of the nonlinear overall system. At their turn these undamped
modes are a consequence of the fact that the resulting differ-
ence operator of the associated functional differential system of
neutral type is not strongly stable but only critically stable – a
specific aspect of almost all mechanical systems.

We shall consider here an electric analogue of the aforemen-
tioned mechanical systems: two LC oscillators having each a
tunnel diode are connected to a lossless LC transmission line
of infinite length. Each independent oscillator has a stable limit
cycle while the LC transmission line has periodic initial condi-
tions. Taking throughout the paper the approach of associating
functional differential equations by integrating along the char-
acteristics, what is left of it is structured as follows. First the
isolated oscillator is considered, recalling the fact that it has a
unique limit cycle which is orbitally stable Răsvan et al. (2008).
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Department of Automation and Electronics, University of Craiova, A.I.Cuza,
13, Craiova, RO-200585, Romania

(e-mail: {ddanciu, vrasvan}@automation.ucv.ro)

Abstract: A rather common model of the synchronization is represented by several local oscillators
coupled to some (possibly distributed) transmission environment. This model goes back to Huygens.
If the transmission environment is represented by a one dimensional distributed parameter structure
(vibrating string in the mechanical case or an electric transmission line for electrical systems) then
some functional differential equations may be associated by integration along the characteristics.
Consequently, the synchronization of the two local oscillators can be analyzed as a problem of forced
oscillations for functional differential equations. In this paper two LC local nonlinear oscillators are
viewed as connected to a lossless LC transmission line of infinite length. This is the electrical analogue
of the Huygens like case where two nonlinear pendula are coupled to a vibrating string.

Keywords: Synchronization, Nonlinear oscillators, LC transmission line, Popov criterion, Time delay

1. INTRODUCTION AND PROBLEM STATEMENT

A. In the contemporary research on systems’ dynamics syn-
chronization plays a distinct role. Its importance is emphasized
in a more or less recent monograph Pikovsky et al. (2001)
where it is considered a universal concept in nonlinear science
(as its title states). It is not our purpose to elaborate on the
concept but just to indicate its place within the qualitative study
of dynamics. For instance, the standard example of Huygens is
concerned with two pendula hanging on a wall or on a system
of ropes that connect then thus “contributing” to their synchro-
nization (observed by Huygens himself). The theoretical gener-
alization of this old classical model is to consider oscillations in
the sense of Lagrange i.e. any dynamical system described by
ordinary differential equations (because Lagrange used to call
oscillation - any transient i.e. non-steady state evolution of a
system regardless it displays or not a periodic orbit). As a con-
sequence there were considered oscillations coupled through
diffusive or lattice structures Hale (1994, 1997). In the afore-
mentioned papers the oscillators had the property of displaying
a unique stable limit cycle accounting for a unique stable self-
sustained periodic oscillation. Under these circumstances the
frequencies and the phases of the oscillations may be viewed
as restricted to a torus and smaller the torus dimension is –
stronger is the synchronization Ermentrout and Koppell (1984);
Koppell and Ermentrout (1986).

Another source for building synchronization models is to con-
sider the coupling through the so called complex interactions
among which one can mention the nonlinear couplings – the
case of combustion modeling due to Kuramoto and Frank-
Kamenetskii, the Power Grids case or the morphogenetic model
of A. M. Turing – but also the linear distributed couplings
– with diffusion or with propagation Hale (2004); Lepri and
Pikovsky (2014). The linear couplings with delays may be also
considered here Earl and Strogatz (2003); Fox et al. (2001).

B. In this research we shall consider the synchronization prob-
lem suggested by Lepri and Pikovsky (2014), at its turn gener-
ated by the classical Huygens synchronization problem. In the

aforementioned paper, two nonlinear pendula without damping
are hanging on a loaded (i.e. having initial conditions) vibrating
string. Both undamped pendula have cyclic trajectories i.e. an
infinity of possible periodic solutions. It is shown that func-
tional differential equations of neutral type can be associated
and that the exchange of signals through the vibrating string is
inducing local dampings in the pendula. The cyclic motions are
replaced by a complex behavior of the overall system. This kind
of behavior can have several explanations that are valid simul-
taneously Lepri and Pikovsky (2014): periodicity of the initial
conditions of the vibrating string but also undamped modes
of the nonlinear overall system. At their turn these undamped
modes are a consequence of the fact that the resulting differ-
ence operator of the associated functional differential system of
neutral type is not strongly stable but only critically stable – a
specific aspect of almost all mechanical systems.

We shall consider here an electric analogue of the aforemen-
tioned mechanical systems: two LC oscillators having each a
tunnel diode are connected to a lossless LC transmission line
of infinite length. Each independent oscillator has a stable limit
cycle while the LC transmission line has periodic initial condi-
tions. Taking throughout the paper the approach of associating
functional differential equations by integrating along the char-
acteristics, what is left of it is structured as follows. First the
isolated oscillator is considered, recalling the fact that it has a
unique limit cycle which is orbitally stable Răsvan et al. (2008).
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neutral type Răsvan (2014). The problem of the synchroniza-
tion thus reduces to the problem of the forced oscillations for
the aforementioned system of neutral functional differential
equations. Here the frequency domain method of V.M. Popov

13th IFAC Workshop on Time Delay Systems
June 22-24, 2016. Istanbul, Turkey

Copyright © 2016 IFAC 200



 Daniela Danciu et al. / IFAC-PapersOnLine 49-10 (2016) 200–205 201

will be applied, based on the basic existence result of Halanay
and Răsvan (1977). The strong stability of the difference oper-
ator will turn again to be essential. In the final part of the paper
some conclusions will be presented and also some continuation
of the research will be suggested.

2. THE BASIC THEORY OF THE LOCAL OSCILLATORS

The essentials of this theory will be presented after Răsvan et al.
(2008) and making use of the general results from Andronov
et al. (1966). The electric diagram together with the nonlinear
characteristic of the tunnel diode are given in Fig. 1.

1

Fig. 1. Local oscillator (standard LC circuit).

It is not difficult to see that there are possible either one or three
equilibria Fig. 2.
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Fig. 2. Equilibria of the tunnel diode oscillator

In the case of a single equilibrium, this equilibrium can be
made globally asymptotically stable i.e. the oscillator does not
oscillate (just like in the morphogenetic model of A.M. Turing).
Taking into account the existing results in the theory of the
forced oscillations it is possible to prove existence of a periodic
solution induced by the line initial conditions; this periodic
solution will display an attraction domain what will signify
local synchronization.

The case of three equilibria is even more interesting: the os-
cillator is unlike other ones (Liénard, van der Pol, Duffing)
namely for this reason. Also the equilibrium Q2 in the “middle”
of the “load line” in Fig. 2 is a saddle point while the other
two are either both focuses (most probable) or both nodes;
therefore they are all inside the possible limit cycle (accord-
ing to Poincaré theorem). Considering the system in deviation
with respect to the saddle point, the tunnel diode characteristic
becomes a S-like function for which self sustained oscillations
are most likely.

Consequently we shall consider the oscillator in fig. 1 and write
down its equations as follows

C
dvC

dt
= iC = iL − iD = iL − f (iD) ; vC = vD

L
diL
dt

=−RiL − vC +E
(1)

where E is a d.c. voltage source for steady state bias. The
equilibria (d.c. solutions) are given by the nonlinear equation

f (vD) =
E
R
− vD

R
(2)

and with a suitable choice of E and R this equation will have
three roots: V , V∗, V̄ such that V <V∗ < V̄ and f ′(V∗)< 1/R <
0. Therefore the equilibrium (V∗, I∗) is always a saddle point.
The other two equilibria (V , I) and (V̄ , Ī) where Ī < I∗ < I
are either stable nodes or stable foci. Therefore the necessary
condition for a limit cycle (Poincaré theorem) namely N = S+1
is fulfilled and the limit cycle, if it does exist, should encompass
all three equilibria. Following and completing citemtns:08 we
sketch the proof of the existence of the limit cycle. Introducing
the deviations from the saddle point equilibrium, namely

ι = iC − I∗ , ν = vD −V∗
the equations in deviations are obtained

C
dν
dt

= ι − [ f (ν +V∗)− f (V∗)] = ι −g(ν)

L
dι
dt

=−ν −Rι
(3)

Associate the Liapunov function given by the electromagnetic
energy stored in the capacitor and the coil

V (ν, ι) =
1
2
(Cν2 +Lι2) (4)

whose derivative function along the solutions of (3) is

W (ν, ι) =−νg(ν)−Rι2 (5)
We have ν = V −V∗ < 0 < ν̄ = V̄ −V∗ and clearly νg(ν) > 0
for ν �∈ (ν , ν̄). Therefore W (ν, ι) < 0 for sufficiently large
deviations. This is nothing more but dissipativeness in the sense
of Levinson (ultimate boundedness) hence all trajectories enter
a disk of radius larger than ν̃ + ε and remain there, where
ν̃ = max{−ν, ν̄}.

On the other hand system (3) fulfils the conditions of the
Theorem of Yakubovich on exponential instability Yakubovich
(1970) (or Theorem 1.1.3 of Gelig et al. (1978); unfortunately
this theorem was not included in the English revised version
of the book Gelig et al. (2004)). Consequently any solution of
(3) will leave the disk of radius min{−ν, ν̄}−ε . Summarizing,
all solutions, regardless the amplitude of the initial deviations,
will ultimately enter an invariant annulus, which is equilibrium
free. According to the theorem of Poincaré and Bendixson,
the annulus contains an orbitally stable limit cycle. We have
no information about the period of the corresponding self
sustained oscillation but if the circuit elements are identical (or
almost) for both oscillators, we may assume quite close periods.
However this aspect is irrelevant for the present paper.

3. THE MATHEMATICAL MODELING OF THE
COUPLED OSCILLATORS

A. We shall refer here to fig. 3 describing the circuitry of the
couplings as well as that of the oscillators. The infinite length
lossless LC transmission line is described by the corresponding
telegraph equations while the local oscillators and their cou-
pling to the line will define some boundary conditions. We shall
have
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