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Abstract: We consider a linear consensus problem involving a time delay that arises from
predicting the future states of agents based on their past history. In case the agents are coupled
in a connected and undirected network, the exact condition for consensus is that the delay be
less than a constant threshold that is independent of the network topology or size. In directed
networks, however, the situation is quite different. We show that the allowable maximum delay
for consensus depends on the network topology in a nontrivial way. We study this delay margin
in several network constellations, including various circulant networks with directed links. We
show that the delay margin depends not only on the number of neighbors, but also on the
directionality of connections with those neighbors. Furthermore, the delay margin improves as
the circulant networks are rewired en route to a small-world configuration.
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1. INTRODUCTION

Consensus and coordination problems arise in a wide
range of applications where multi-agent systems interact
to agree on a common value of a certain quantity of
interest. We can cite here, among others, Lynch (1996)
in distributed computing, DeGroot (1974) in management
science, Vicsek et al. (1995) in flocking and swarming
theory, Fax and Murray (2004) in distributed control, and
Olfati-Saber and Shamma (2005) in sensor networks. The
classical linear consensus problem can be formulated in the
form

iizzaij(zj(t)_xi(t))a i:l,...,n (1)

where n is the number of agents in the network, z; € R
is the state of the agent ¢ at time ¢, which changes
under the interaction with other agents, and a;; are
nonnegative numbers describing the interaction strength
between agents ¢ and j. Consensus can then be formally
defined as follows.

Definition 1. The system (1) is said to reach consensus if
for any set of initial conditions {z;(0)} there exists ¢ € R
such that lim; o, z;(t) = ¢ for all ¢, in which case the
number c is called the consensus value.

Under mild conditions related to the connectivity of the
network, it can be shown that the system (1) reaches
consensus from arbitrary initial conditions, and the con-
sensus value equals the average of initial conditions of the
agents. The problem becomes more interesting when the
system involves a time delay 7, for example an information
processing delay modeled by

iy =) ai (2t = 7) — @it = 7)) (2)
j=1

which has been studied in Olfati-Saber and Murray (2004).
In this case, it is known that there exists an upper limit
Tmax Such that the system (2) reaches consensus from
arbitrary initial conditions if and only if 7 < Tyhax (see,
for instance, Olfati-Saber and Murray (2004)). Another
model, which involves an information transmission delay,
is given by (Moreau, 2004; Seuret et al., 2008; Atay, 2012,
2013)

T; :Zaij (w(t — 1) —23(2)) - (3)

It has been shown that such a system reaches consensus
from arbitrary initial conditions regardless of the value
of the delay 7 as long as the network contains a spanning
tree; however, the consensus value depends on the system’s
history in a nontrivial way (Atay, 2012, 2013).

In this paper we are concerned with a rather different
source of delay, arising from the anticipatory nature of
the agents. More precisely, we consider a network of
intelligent agents who try to predict the future states of
their neighbors in their interaction. Formulating in the
context of system (1), agent 7 uses, instead of the current
state x;(t) of its neighbor, a predicted value &;(t + 7) of
its future state, yielding

x'i:z:aij(ij(t—FT)—l'i(t)), i=1,...,n (4)

j=1

Using a first order estimation (Atay and Irofti, 2015),
the prediction of the future can be done by a linear
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Fig. 1. Linear prediction of the future state z; (¢ +7) of an
agent j using its present and past states.

extrapolation from past values, namely

Bi(t+7) = a;(t) + %) _if’(t—T)T,

— 2a,() — 2,(t = 7). (5)
(See Figure 1 for a graphical depiction.)

Using (5) in (4), we arrive at the main model that we will
study in this paper:

Bi(0) = 7 D Qa(0) — 2yt = )~ w(6), (6)
Cart

Note that we have additionally normalized the summation
term via dividing by the (generalized) degree d; of node i,
d; = Z;.L:l ai;. This normalization gives rise to a normal-
ized Laplace operator, which is a natural choice in several
applications and has some advantageous properties, as will
be briefly reviewed in Section 2. In particular, the normal-
ization bounds the spectrum of Laplacian regardless of the
network size, thus allowing comparison of networks of very
different sizes.

When the network is undirected (i.e. a;; = aj; Vi, j) and
connected, it has been shown (Atay and Irofti, 2015, 2016)
that system (6) reaches consensus from arbitrary initial
conditions if and only if

T <L (7)

In other words, in the undirected case, the maximum
allowable delay for consensus in (6) (the delay margin)
equals 1 regardless of the network topology. The situation
for directed networks is different, however, as we show in
this paper. In particular, the network topology turns out
to play an important role in affecting the delay margin.

In the following, we first prove that (7) is a necessary
condition for consensus, but it is not sufficient. Moreover,
as already mentioned above, the undelayed network (7 =
0) always reaches consensus (as long as it contains a
directed spanning tree). It follows by continuity that,
sufficiently small delays will not destroy stability of the
consensus. Hence, the delay margin for (6) is some positive
number less than one. We calculate the locus of (complex)
Laplacian eigenvalues that are detrimental for consensus.
Just like undirected networks, many directed networks also
turn out to enjoy (7) as the exact condition for consensus.
However, we show that some specific networks that are

actually frequently used in the literature do have much
lower delay margins. We study these circulant networks
in detail with respect to their Laplacian eigenvalues and
determine their delay margins. We also consider random
rewiring of circulant networks en route to small-world
configuration and show that a few rewirings improve the
delay margin already, although the improvement is not
monotone with further rewirings.

2. DIRECTED NETWORKS AND CHARACTERISTIC
ROOTS

A directed graph (or digraph) G = (V,E) consists of a
finite set V' of vertices and a set of directed edges E C V x
V' consisting of ordered pairs of vertices. We consider only
simple, non-trivial graphs without self-loops or multiple
edges. We denote by A = [a;;] the (weighted) adjacency
matrix of the graph, where a;; > 0 if there is a directed link
from node j to node %, and a;; = 0 otherwise. The in-degree
d; of node 7 is defined as d; = Z?:l aij, i.e., the sum of
the elements of the i" row of A, and D = diag(dy,...,d,)
denotes the diagonal matrix of in-degrees.

Assuming that d; # 0 Vi, the normalized Laplacian matrix
is defined as

L=1,—-D A, (8)
where n is the number of nodes in the network and I, is
the identity matrix of size n. The normalized Laplacian
L naturally arises in a class of important problems, in
particular in random walks on networks, as D! A4 is the

transition matrix for probability distributions arising from
such walks (Chung, 1997).

An application of Gershgorin’s theorem to the definition
of L shows that the Laplacian eigenvalues A\, are complex
numbers satisfying

1—-X| <1, k=1,2,...,n. (9)
Furthermore, the first eigenvalue \; is always zero and
corresponds to the eigenvector (1,1,...,1)". In the special

case of undirected networks the eigenvalues are all real,
because D! A is similar to a symmetric matrix, D~'A =
D~Y2(D~Y2AD-1/2)D'/2 as A is symmetric and D is
diagonal.

In matrix form, (6) becomes
(t) = DrPAQx(t) — 2(t — 7)) — 2(), (10)

with ¢ = (21, 29, . .. ,xn)T. Suppose that L has a complete
set of eigenvectors {vy} corresponding to the eigenvalues
{\r}. Then one can write z(t) = >_;_, ux(t)vy for some
scalar coefficients uy, which transforms (10) into a system
of n decoupled scalar equations

ﬂk(t) = (1 - 2)\k) uk(t) — (]. — )\k)uk(t — T), (11)
for kK =1,...,n. The characteristic equation correspond-
ing to the eigenmode (11) is

Yr(s) =5 —2(1—Ap) + 14+ (1= Ap)e™*" =0, (12)
and the characteristic equation for the whole system (10)
can be written as

U(s) =[] vrls) =0. (13)
k=1

Note that s = 0 is always a characteristic root for the first
factor
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