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1. INTRODUCTION

Many examples of neutral time-delay systems can be found
in nature or in man-made systems (e.g., see Slemrod
(1971), Răsvan (1974), Niculescu and Brogliato (1999),
Bellen et al. (1999)). An important class of neutral
time-delay systems is the so-called lossless propagation
(Niculescu (2001)) time-delay systems, whose dynamics
can be described by coupled delay-differential-algebraic
equations. Stabilization of neutral time-delay systems are,
in general, more difficult than that of retarded time-delay
systems. Furthermore, unlike a retarded time-delay sys-
tem, a neutral time-delay system may become unstable
by small perturbations in the time-delays. Because of this,
the concept of strong stability was introduced by Hale and
Verduyn-Lunel (1993). A time-delay system is said to be
strongly stable if it is stable and remains stable despite
infinitesimal changes in the time-delays.

One method, which can be employed in the stabilization
of linear time-invariant (LTI) time-delay systems, is the
continuous pole placement algorithm, which was originally
proposed for retarded time-delay systems by Michiels et al.
(2002) and extended for neutral time-delay systems by
Michiels and Vyhlidal (2005). Although the algorithm
was originally proposed for static state vector feedback,
it was extended to dynamic output feedback by Erol and
İftar (2014, 2015), where only retarded time-delay systems
were considered. In the present work, we consider a quite
general class of LTI neutral time-delay systems, namely
lossless propagation time-delay systems. We propose a
controller design algorithm, based on the continuous pole
placement algorithm, to strongly stabilize such systems
by finite-dimensional dynamic output feedback controllers.
The problem is stated in Section 2 and its proposed
solution is given in Section 3. Section 4 includes an
example to demonstrate the proposed approach.
� This work is supported in part by the Scientific and Techni-
cal Research Council of Turkey (TÜBİTAK) under grant number
115E379 and in part by the Scientific Research Projects Commission
of Anadolu University under grant number 1603F119.

Throughout the paper, C, R and N, denote the sets of,
respectively, complex numbers, real numbers and non-
negative integers. For s ∈ C, Re(s) denotes the real
part of s. For a, b ∈ R, with a < b, (a, b) and [a, b]
indicate, respectively, the open and the closed intervals
of the real line between a and b. For k, l ∈ N, Fk and Fk×l

denote the spaces of, respectively, k-dimensional vectors
and k× l-dimensional matrices with elements in F , where
F is either R or C. Ik and 0k×l respectively denote the
k × k-dimensional identity and the k × l-dimensional zero
matrices. When the dimensions are apparent, we use I and
0 to denote respectively the identity and the zero matrices.
For µ ∈ R, C−

µ := {s ∈ C | Re(s) < µ} and C+
µ := {s ∈

C | Re(s) ≥ µ}. det(·), rank(·), ρ(·), ‖·‖, (·)†, (·)T , and (·)∗
respectively denote the determinant, the rank, the spectral
radius, the 2-norm, the Moore-Penrose generalized inverse,
the transpose, and the complex-conjugate transpose of (·).
Finally, i denotes the imaginary unit.

2. PROBLEM STATEMENT

Consider a LTI time-delay system, Σ, described as
σ∑

i=0

(
Eiẋ(t− hi)

)
=

σ∑
i=0

(
Aix(t− hi) +Biu(t− hi)

)

y(t) =
σ∑

i=0

(
Cix(t− hi) +Diu(t− hi)

) , (1)

where x(t) ∈ Rn is the state vector at time t, and u(t) ∈ Rp

and y(t) ∈ Rq are, respectively, the input and the output
vectors at time t. The matrices Ei, Ai, Bi, Ci, and Di

(i = 0, . . . , σ) are constant real matrices, h0 := 0 is defined
for notational convenience, hi > 0, i = 1, . . . , σ are
the time-delays, and σ is the number of distinct time-
delays involved. Here, we restrict ourselves to lossless
propagation time-delay systems (Niculescu (2001)), which
can be represented by (1), where (by an appropriate state
transformation) Ei and Ai matrices (i = 0, . . . , σ) can be
written as

Ei =

[
E11

i 0
0 0n2×n2

]
and Ai =

[
A11

i A12
i

A21
i A22

i

]
, (2)
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∗ heerol@anadolu.edu.tr ∗∗ aiftar@anadolu.edu.tr

Abstract: Stabilizing controller design problem for a class of LTI neutral time-delay systems,
namely lossless propagation time-delay systems, is considered. Effect of small time-delay
perturbations on the stability is also taken into account. A dynamic output feedback controller
design approach, based on the continuous pole placement algorithm, is proposed. A numerical
example is also presented to demonstrate the proposed approach.

Keywords: Time-delay systems; neutral systems; feedback stabilization; pole placement.

1. INTRODUCTION

Many examples of neutral time-delay systems can be found
in nature or in man-made systems (e.g., see Slemrod
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Eiẋ(t− hi)

)
=

σ∑
i=0

(
Aix(t− hi) +Biu(t− hi)

)

y(t) =
σ∑

i=0

(
Cix(t− hi) +Diu(t− hi)

) , (1)

where x(t) ∈ Rn is the state vector at time t, and u(t) ∈ Rp

and y(t) ∈ Rq are, respectively, the input and the output
vectors at time t. The matrices Ei, Ai, Bi, Ci, and Di

(i = 0, . . . , σ) are constant real matrices, h0 := 0 is defined
for notational convenience, hi > 0, i = 1, . . . , σ are
the time-delays, and σ is the number of distinct time-
delays involved. Here, we restrict ourselves to lossless
propagation time-delay systems (Niculescu (2001)), which
can be represented by (1), where (by an appropriate state
transformation) Ei and Ai matrices (i = 0, . . . , σ) can be
written as

Ei =

[
E11

i 0
0 0n2×n2

]
and Ai =

[
A11

i A12
i

A21
i A22

i

]
, (2)

13th IFAC Workshop on Time Delay Systems
June 22-24, 2016. Istanbul, Turkey

Copyright © 2016 IFAC 218

Strong Stabilization of Lossless
Propagation Time-Delay Systems by

Continuous Pole Placement �

H. Ersin Erol∗ Altuğ İftar∗∗
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(1971), Răsvan (1974), Niculescu and Brogliato (1999),
Bellen et al. (1999)). An important class of neutral
time-delay systems is the so-called lossless propagation
(Niculescu (2001)) time-delay systems, whose dynamics
can be described by coupled delay-differential-algebraic
equations. Stabilization of neutral time-delay systems are,
in general, more difficult than that of retarded time-delay
systems. Furthermore, unlike a retarded time-delay sys-
tem, a neutral time-delay system may become unstable
by small perturbations in the time-delays. Because of this,
the concept of strong stability was introduced by Hale and
Verduyn-Lunel (1993). A time-delay system is said to be
strongly stable if it is stable and remains stable despite
infinitesimal changes in the time-delays.

One method, which can be employed in the stabilization
of linear time-invariant (LTI) time-delay systems, is the
continuous pole placement algorithm, which was originally
proposed for retarded time-delay systems by Michiels et al.
(2002) and extended for neutral time-delay systems by
Michiels and Vyhlidal (2005). Although the algorithm
was originally proposed for static state vector feedback,
it was extended to dynamic output feedback by Erol and
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where E11
i and A11

i are n1 × n1 dimensional and A22
i are

n2 × n2 dimensional matrices with rank
(
E11

0

)
= n1 and

rank
(
A22

0

)
= n2, where n1, n2 ∈ N and n1 + n2 = n.

Relating to the system Σ, described by (1), let us first
present the following definitions, which are borrowed from
Erol and İftar (2016).

Definition 1. For any given µ ∈ R, the set of µ-modes of
the system Σ, described by (1), is defined as

Ωµ (Σ) :=
{
s ∈ C+

µ | φΣ(s) = 0
}

, (3)

where φΣ(s) := det
(
sĒ(s)− Ā(s)

)
is the characteristic

function of the system Σ, where

Ē(s) :=

σ∑
i=0

Eie
−shi and Ā(s) :=

σ∑
i=0

Aie
−shi . (4)

Furthermore, any so ∈ C for which φΣ(so) = 0 is said to

be a simple mode of Σ, if dφΣ(s)
ds |s=so �= 0, and is said to

be a multiple mode of Σ, otherwise. Moreover, k ∈ N is

said to be the multiplicity of so, if
drφΣ(s)

dsr |s=so = 0, for

r = 1, . . . , k − 1, but dkφΣ(s)
dsk

|s=so �= 0.

Definition 2. For any given µ ∈ R, the system Σ is said to
be µ-stable if Ωµ−δ (Σ) = ∅ for some δ > 0. Furthermore,
a controller K is said to µ-stabilize the system Σ, if the
closed-loop system obtained by applying the controller K
to system Σ is µ-stable.

Remark 1. For any µ ≤ 0, µ-stability of Σ, as defined
above, is equivalent to its exponential stability with decay
rate less than µ (Michiels and Niculescu (2007)).

Although the system Σ has infinitely many modes, in gen-
eral, it is known that (Niculescu (2001)) Ωµ (Σ) is a finite
set for any µ > µf (Σ), where µf (Σ) := max (µE , µA),
where

µE := sup

{
Re(s)

∣∣ det

(
σ∑

i=0

E11
i e−shi

)
= 0

}
(5)

and

µA := sup

{
Re(s)

∣∣ det

(
σ∑

i=0

A22
i e−shi

)
= 0

}
. (6)

Although the modes of Σ with finite magnitute change
continuously with respect to both entries of Ei and Ai

matrices and the time-delays, it is known that both µE

and µA are sensitive to infinitesimal changes in the time-
delays (Hale and Verduyn-Lunel (1993)). Because of this,
the concept of strong stability was introduced by Hale and
Verduyn-Lunel (1993).

Definition 3. For any given µ ∈ R, the system Σ is said to
be strongly µ-stable if it is µ-stable and remains µ-stable
when subjected to infinitesimal changes in the time-delays.

Let X denote either E or A and µδ
X denote the supre-

mum of µX over all perturbations of the time-delays hi,
i = 1, . . . , σ, within the interval (max(0, hi − δi), hi + δi),
where δi > 0 and δ := [ δ1 · · · δσ ]. Then, define
µs
X := limδ→0 µ

δ
X and µs

f (Σ) := max (µs
E , µ

s
A). Then, Σ is

strongly µ-stable if and only if µs
f (Σ) < µ and Ωµ (Σ) = ∅.

Therefore, to strongly µ-stabilize Σ, we have to find a
controller which achieves µs

f (Σ
c) < µ and Ωµ (Σ

c) = ∅,
where Σc denotes the closed-loop system. It is known that
µs
E can not be changed by a proper controller (Loiseau

et al. (2002)). Although it is possible to change µs
A, in

this work, for some ε > 0, we will assume that the given
system satisfies both µs

E < µ − ε and µs
A < µ − ε, i.e.,

µs
f (Σ) < µ−ε. Here, we require µs

f (Σ) < µ−ε, rather than

µs
f (Σ) < µ, so that we can compute Ωµ−ε(Σ). Therefore,

we will only try to move finitely many modes in Ωµ (Σ)
towards C−

µ . To achieve this, however, the given system
must be µ-stabilizable and µ-detectable (Richard (2003)).

Definition 4. For any given µ ∈ R, the system Σ is said to
be µ-stabilizable if

rank
[
sĒ(s)− Ā(s) B̄(s)

]
= n , (7)

and is said to be µ-detectable if

rank

[
sĒ(s)− Ā(s)

C̄(s)

]
= n (8)

for all s ∈ Ωµ−δ(Σ) for some δ > 0, where Ā(s) and Ē(s)
are as defined in (4), and

B̄(s) :=

σ∑
i=0

Bie
−shi and C̄(s) :=

σ∑
i=0

Cie
−shi . (9)

Therefore, in the rest of the paper, we assume that the
given system Σ is (µ−ε)-stabilizable and (µ−ε)-detectable,
where ε is as introduced in the paragraph preceding
Definition 4.

To strongly stabilize the system Σ, we consider finite-
dimensional dynamic output feedback controllers of the
form:

ż(t) = Fz(t) +Gy(t)
u(t) = Hz(t) +Ky(t)

, (10)

where z(t) ∈ Rm is the state vector of the controller at
time t, where m ∈ N is the controller dimension. Since the
input-output behaviour of the controller (10) is unique up
to a similarity transformation, in order to minimize the
number of free parameters of the controller, we assume
that F ∈ Rm×m, G ∈ Rm×q, H ∈ Rp×m, and K ∈ Rp×q

are structured in a multivariable canonical form. The
forms we use are given in Erol and İftar (2015). In any of
these forms, the number of the free controller parameters
is

m̂ := m(p+ q) + pq . (11)

We note that, such a structuring reduces the number of
free parameters by m2. We also note that, when m = 0,
the controller (10) reduces to a static output feedback
controller of the form: u(t) = Ky(t), in which case m̂ = pq
and there is no structuring.

Now, let Bi, Ci, i = 0, . . . , σ, and x(t) be partitioned

as Bi =
[
(B1

i )
T (B2

i )
T
]T

, Ci =
[
C1

i C2
i

]
, and x(t) =[

xT
1 (t) xT

2 (t)
]T

, where the partitioning is compatible with

the partitioning in (2). Also let v(t) :=
∑σ

i=0 E
11
i x1(t−hi)

and

η(t) :=
[
vT (t) zT (t) xT (t) yT (t) uT (t)

]T ∈ Rn̂, (12)

where n̂ := n1+m+n+q+p. Then, the closed-loop system
dynamics, obtained by applying controller (10) to Σ, can
be described as

Êη̇(t) =

σ∑
i=0

Âiη(t− hi) , (13)

where Ê :=

[
In1+m 0

0 0(n+q+p)×(n+q+p)

]
,
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