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1. INTRODUCTION

Time delay systems are often used to model the behaviour
of systems in the field of biology, chemistry, economics,
physics, population dynamic and engineering science. The
first analysis of time delay systems was done by the
Bernoulli brothers and L. Euler in the 18. century. With
the systematic studies of A. Myshkis and R. Bellman, a
deeper understanding of this systems began, see Fridman
(2014). A lot of publications were produced in this field of
study since 1960. The topic of robust control of time delay
systems led to the time delay boom since the middle of the
1990. The last developments happened so fast that some
important links between some of the individual theoretical
results were lost or not recognized. All of the frequency
based methods discussed in this paper depend on this
continuity theorem of Datko (1978) which simply states
that the linear time invariant delay system

ẋ−
r∑

m=1

Bmẋ(t−mτ) = A0ẋ+

r∑
m=1

Amx(t−mτ) (1)

is stable for some values of parameters and unstable for
other values. Also, there are values for these parameters
in-between where the system is on the stability margin.
The system is asymptotically stable if all the poles lie
in the open left half plane (LHP). In the delay case,
there exists an infinite number of poles which makes
the determination of the stability for time delay systems
more complicated. However, it can be shown that all the
infinite roots behave regularly, see Hohenbichler (2003).
They are located on asymptotes which are called root
chains. Retarded type systems have roots which move
deep into the LHP. The roots of neutral type systems
lie on a vertical asymptote parallel to the imaginary
axis. Forestall type systems have roots which are located
deep in the right half plane (RHP) and these systems
are unstabilizable. The present paper focusses on the

problem of calculating the stabilizing parameter space for
delay systems with uncertain system parameters. Most of
the classical approaches in this field concentrate only on
calculating the stabilizing delay values and not the other
stabilizing system parameters. Therefore, most of these
methods fail to solve this problem. Accordingly, a novel
method for computing the stabilizing system parameters
as well as the controller parameter space for time delay
systems will be presented.
The structure of the paper is as follows. The next section
deals with the problem where the time delay parameter
value is the only uncertain parameter of a system. It
offers a survey of recent stability calculation methods and
develops a generalization of the problem of calculating the
stability region for time delay systems. Thereafter, a short
review of methods for the stabilizing controller parameter
space calculation will be presented. Finally in section III,
a new approach for the stabilizing system parameter space
will be proposed by assuming the time delay as fixed.

2. DELAY PARAMETER SPACE CALCULATION

The following methods consider the controller gains as well
as the system parameters as constant and the only un-
known parameter is the time delay value. These methods
for the delay parameter space calculation are based on the
τ -decomposition concept which simply divides the delay
region into intervals where each interval consists of the
same number of unstable roots NU(τ). At the boundary
of each interval there is at least one pole on the imaginary
axis. In some cases, there is only one interval which is the
whole axis. Such systems are stable/unstable independent
of delay. The so called crossing frequencies ωc ∈ �+ and
crossing delays τ = τck are satisfying the characteristic
equation δ(s, τ) of the system for s = jωc. The delay
parameter space calculation method utilizes the paradigm
cluster treatment of characteristic roots (CTCR) which
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states that the set of all crossing frequencies {ωc} consists
of a finite number of crossing frequencies which can not be
more than n2 where n is the system order, see Niculescu
(2004). For each crossing frequency s = jωc there is a
cluster with an infinite number of crossing delays τck that
satisfies the characteristic equation which is related by

τck = τc + 2πk/ωc k = 0, 1, 2, . . . . (2)

The period between two crossing delays in the same cluster
is 2π/ωc. The period is smaller and the crossing rate is
higher for higher crossing frequencies. The classical con-
cept of root tendency RT = sign [Re(∂s/∂τ)|s=jωc,τ=τc)] .
indicates the behaviour of the poles on the imaginary axis
as τck increases from τck to τck + � where � is a very
small positive value. The invariance property states that
for each cluster (ωc, τck) the root tendency is the same
for all crossing delays, see Olgac (2002). If RT = 1, the
cluster (ωc, τck) is destabilizing and the poles crosses from
the LHP to the RHP and NU(τ) increases by 2. Other
vice, the cluster is stabilizing and the poles crosses from
the RHP to the LHP and NU(τ) decreases by 2. Note, a
more general invariance property has been presented in Li
(2015) which is applicable even for systems with multiple
roots. The following subsections briefly explain the most
popular delay parameter space calculation methods before
stating a generalization of the these methods.

2.1 Direct method

These intuitive and straightforward computational ap-
proach was introduced in Walton (1987); Cooke (1986). A
necessary and sufficient condition for determining at which
values of delay the roots lie on the imaginary axis is that
s = jω is the solution of the characteristic equation

δ(jω, τ) = a0(jω) + a1(jω)e
−jωτ = 0 (3)

where ω ∈ �+. Using the fact that the roots always
cross the imaginary axis as a complex conjugated pair,
the substitution s = −jω also satisfies the equation

δ(−jω, τ) = a0(−jω) + a1(−jω)ejωτ = 0. (4)

Multiplying both equations yield

W (ω) = a0(jω)a0(−jω)− a1(jω)a1(−jω) = 0 (5)

which is a polynomial in ω with finite dimension of degree
n2. A similar decoupling idea is also used in Bhattacharyya
(2012) and can be traced back to Tsypkin (1946). Only
positive solutions of ω form the crossing frequency set
{ωc}. The solution of W (ω) does only depend on the
system parameters and not on the delay. If ωc is sorted
in descending order, it holds for the single delay case that
the first crossing frequency is destabilizing, the second
stabilizing and so on, see Walton (1987). This property
can be used instead of calculating RT. The solution for
the associated τck values with each ωc can be obtained
using real and imaginary parts of equation (3)

cos(ωcτ) = Re(−a(jωc)/b(jωc)) (6)

sin(ωcτ) = Im(a(jωc)/b(jωc)). (7)

Solving for τ yields

τck = tan−1

⎛
⎝ Im{a(jωc)

b(jωc)
}

Re{−a(jωc)
b(jωc)

}

⎞
⎠+

2πk

ωc
, k = 0, , 1, 2, . . . .

There are no crossings as τ increases and the system
is stable/unstable independent of delay if there are no

real solutions for W (ω) existing. The system is unstable
for all values of τ if s = 0 is a solution for the delay
free system a(s) + b(s) = 0. This method can also be
extended to multiple commensurate delays (see Walton
(1987)) which could produce additional fictitious crossing
frequencies (see Sipahi (2006)).

2.2 Rekasius substitution method

This method was firstly introduced in Rekasius (1980). By
applying the simple substitution

e−τs =
1− Ts

1 + Ts
, T ∈ �, τ ∈ �+ (8)

the quasi-polynomial of the infinite dimension is trans-
formed into a finite dimensional polynomial of order n2:

δ(s, T ) =

n�
k=0

ak(s)(1 + Ts)n−k(1− Ts)k = 0. (9)

This substitution works only at crossing frequencies when
s = jω. The new finite dimension characteristic equation
has poles on the imaginary axis that coincide with the
infinite one. A Routh-Hurwitz table can be formed by
using equation (9). To get values of Tc that cause poles on
the imaginary axis, it is required to solve the term R11(T )
in front of s1 for real values of T and to substitute these
values into the two terms R21(T ) and R22(T ) in front of
s2, see Niculescu (2004). If the two terms have the same
sign then these values of T should be included in {Tc}. The
crossing frequencies are given by ωc =

�
R22/R21 which is

considered as an one to one mapping from Tc to ωc. The
mapping of Tc and ωc to τck which can be derived easily
by equating the phases in equation (8) is

τck = 2/ωc(tan
−1(ωcTc) + kπ) k = 0, 1, 2, . . . . (10)

It is extended to systems with two time delays in Sipahi
(2004, 2005) .

2.3 Matrix multiplication method

The Matrix multiplication method was introduced in
Lousiell (2001). It eliminates the delay and solves the
resulting equation for the crossing frequencies for time
delay systems described in matrix form. The characteristic
equation for r = 1 (see equation (1)) is

δ(s, τ) = det(sI −A0 + (−sB1 −A1)e
−τs) = 0. (11)

This can be seen as the following eigenvalue problem

(sI −A0)v = e−τs(sB1 +A1)v, v �= 0 (12)

conjugating and transposing the previous equation gives

v∗(sI +AT
0 ) = eτsv∗(sBT

1 −AT
1 ). (13)

Multiplying both equations eliminates the delay and the
resulting equation is

(sI−A0)vv
∗(sI+AT

0 ) = (sB1+A1)vv
∗(sBT

1 −AT
1 ). (14)

The previous equation can be written as

((sI−A0)⊗(sI+A0)−(sB1+A1)⊗(sB1−A1))u = 0 (15)

where u = ξvv∗, using the mapping ξ in Lousiell (2001).
Equation (15) can be seen as an eigenvalue problem of

det(sE − J) = 0 with

E =

�
I ⊗ I B1 ⊗ I
I ⊗B1 I ⊗ I

�
, J =

�
A0 ⊗ I −A1 ⊗ I
I ⊗A1 −I ⊗A0

�
.

(16)

Now, the crossing frequency set {ωc} of equation (11)
can be calculated by computing the purely imaginary

2016 IFAC TDS
June 22-24, 2016. Istanbul, Turkey

230 230



Download English Version:

https://daneshyari.com/en/article/710183

Download Persian Version:

https://daneshyari.com/article/710183

Daneshyari.com

https://daneshyari.com/en/article/710183
https://daneshyari.com/article/710183
https://daneshyari.com

