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1. INTRODUCTION

A wide range of nonlinear systems can only be tackled
using nonlinear techniques (Isidori (1995)). The majority
of such techniques are applicable only for a narrow class
of nonlinear systems, while the more generally applicable
methods suffer from computational complexity problems.
One possible way of balancing between general applicabil-
ity and computational feasibility is to find nonlinear sys-
tem classes with good descriptive power but well character-
ized structure, and utilize this structure when developing
control design methods. This is possible, for example, in
the case of quasi-polynomial systems, that is the subject
of this paper.

Previous work in the field of quasi-polynomial systems
include the paper of Figueiredo et al. (2000), which gives
a sufficient condition for the global stability of quasi-
polynomial systems in terms of the feasibility of a linear
matrix inequality (LMI). Based on this result, it has been
shown in Magyar et al. (2008), that the globally stabi-
lizing state feedback design for quasi-polynomial systems
is equivalent to a bilinear matrix inequality. It is also
shown there, that although the solution of a bilinear ma-
trix inequality is an NP hard problem, an iterative LMI
algorithm could be used. A summary of linear and bilinear
matrix inequalities and the available software tools for
solving them can be found in VanAntwerp and Braatz
(2000).

� This research is supported by the National Research, Development
and Innovation Office - NKFIH through grant No. 115694.
��A. Magyar was supported by the János Bolyai Research Scholar-
ship of the Hungarian Academy of Sciences.

Another control synthesis algorithm for polynomial sys-
tems is presented in Tong et al. (2007). A different ap-
proach has been presented in Magyar and Hangos (2015)
where Lotka-Volterra models has been globally stabilized
based on their underlying linear model.

The aim of this paper is to apply a LQ based state feed-
back controller for quasi-polynomial and Lotka-Volterra
systems through a locally linearized model corresponding
to a (unique) positive equilibrium point of the closed-
loop system. The primary aim is the formulation of a LQ
problem that yields a diagonally stable LTI system and
the corresponding globally asymptotically stable Lotka-
Volterra or quasi-polynomial system. Of course, the case
when the quasi-monomial composition matrix is rank-
deficient, it is far from being trivial and one can expect
only local asymptotic stability in this case.

2. BASIC NOTIONS

The most important results on quasi-polynomial (QP) and
Lotka-Volterra (LV) systems and on their stability analysis
are briefly presented here.

2.1 Quasi-Polynomial and Lotka-Volterra Systems

The system dynamics of an autonomous quasi-polynomial
(QP) system can be described by a set of differential-
algebraic equations (DAEs), where the ordinary differen-
tial equations

dzi
dt

= zi


λi +

m∑
j=1

αijqj


 , i = 1, ..., n, (1)
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are equipped by the so called quasi-monomial relationships

qj =

n∏
i=1

z
βji

i , (2)

that are apparently nonlinear (monomial-type) algebraic
equations. Two sets of variables are defined, that are (i)
the differential variables zi, i = 1, ..., n, and (ii) the quasi-
monomials qj , j = 1, ...,m. The parameters of the above
model are collected in the coefficient matrix [A]ij = αij ,
quasi-monomial composition matrix [B]ji = βji and a
vector [λ]i = λi. Then equation (1) can be written in the
compact form

ż = D(z) (λ+Aq) , (3)

where D(·) stands for diag(·).
It is easy to see that Lotka-Volterra systems form a special
subset of the quasi-polynomial systems with the choice
B = I, and thus q = z with n = m

ż = D(z) (λ+Az) . (4)

This constitutes a special square invertible case for the
quasi-monomial composition matrix B.

Lotka-Volterra form It can be shown (see Hernández-
Bermejo and Fairén (1995)) that the class of QP systems
is closed under the so called quasi-monomial transforma-
tion (QM transformation), where the product M = BA
remains constant when transforming a QP model. This
way the QM transformation splits the set of QM models
into equivalence classes that are represented by a Lotka-
Volterra model where the differential variables are the
quasi-monomials

q̇ = D(q)(B λ+BAq) = D(q)(B λ+Mq), (5)

where q satisfy the algebraic equations (2).

We can consider the logarithm of these algebraic equations
because of the positivity of the two sides

ln q = B · ln z, (6)

where [ln x]i = ln xi. Then (6) is equivalent to

ln q ∈ range(B). (7)

This manifold (7) is an invariant subspace of the dynamics
(5) because

dln q

dt
= B (λ+Aq) ∈ range(B). (8)

It is easy to see that when the matrix B is invertible then

z = exp(B−1 ln q) (9)

for all q ∈ Rn
>0. It means that the algebraic equation (2)

has a positive solution for all q ∈ Rn
>0.

In the usual case of m > n, the right side of the
transformed ODE (5) would be simpler, but we have to
consider the algebraic conditions (2).

Steady-state points The non-zero steady-state point(s) of
the dynamic equations (1) are obtained by setting the left-
hand sides equal to zero, and solve the equations

0 = λ+A · q∗, (10)

for q∗ (the vector q∗ has a quasi-monomial relationship
with the equilibrium point z∗). Generally, this equation

has a unique solution if A is quadratic and invertible, but
the solution is not necessarily positive.

Otherwise, if m > n, then the set of equations (10)
may have infinitely many solutions. However, the set of
algebraic equations (6) puts a set of nonlinear constraints
to the elements of the vector q∗ (i.e. the vector q should
be taken from a lower dimensional manifold of the quasi-
monomial space) that may result in a unique equilibrium
point even in this case. The existence of strictly positive
solutions without algebraic constraints can be tested by
various algorithms or simple linear programming.

Quasi-Polynomial models with input Let us consider a
linear input structure for the original QP model (1), that
can be formally derived by regarding λ as a function of the
input vector u

λ = φu, u ∈ Rp, φ ∈ Rn×p, p ≤ n (11)

such that the state equation is in the form

ż = D(z) (φu+Aq) (12)

with the algebraic equations (6).

2.2 Stability Condition of QP systems

Assume that there exists a positive steady-state point z∗ of
the QP system (1). Then this steady state point is globally
asymptotically stable if there exists a positive diagonal
matrix P for the product matrix M = BA such that

MP + PMT < 0, (13)

or
QM +MTQ < 0, (14)

where Q = P−1 is positive definite diagonal matrix (Gléria
et al. (2001); Figueiredo et al. (2000)). In this case, the
matrix M is called diagonally stable (Kaszkurewicz and
Bhaya (2012)).

It is important to note that the feasibility of the above LMI
is a sufficient (but not always necessary) condition for the
stability, as it is derived from the dissipativity property of
the entropy-like Lyapunov function

V (q) =
m∑
i=1

γi

(
qi − q∗i − q∗i ln

qi
q∗i

)

where γi > 0 and Q = D(γ).

2.3 Locally Linearized QP Model

The linearized version of the QP model (1) around its
positive equilibrium point z∗ is in the form

∆z

dt
=

[
D(z∗)AD(q∗)BD(z∗)−1

]
∆z (15)

where ∆z = z− z∗. When the matrix B is invertible, then
we can transform (15) with the linear transformation

x =
[
D(q∗)BD(z∗)−1

]
∆z = T∆z (16)

with the transformation matrix

T = D(q∗)BD(z∗)−1 , (17)

and the transformed system is in the form

ẋ = D(q∗)BAx = M∗x. (18)
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