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Abstract:
In this paper, we provide the optimal data fusion filter for linear systems suffering from possible
missing measurements. The noise covariance in the observation process is allowed to be singular
which requires the use of generalized inverse. The data fusion process is made on the raw data
provided by two sensors observing the same entity. Each of the sensors is losing the measurements
in its own data loss rate. The data fusion filter is provided in a recursive form for ease of
implementation in real-world applications.
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1. INTRODUCTION

Multi-sensor data fusion is defined as the process of
combining data from multiple resources to improve the
quality of the estimation process. The data resources may
be chosen to be of the same type or of different types.
The first case increases system reliability and the second
case increases the knowledge about the system. The multi-
sensor data fusion has been investigated by many research
bodies, Hall (1992),Hall and Llinas (1997) for a typical
literature review. Most of the research about multi-sensor
data fusion considers the development of algorithms and
architectures that increase the usability and feasibility
of the estimation process, however, they assumed perfect
sensor conditions and perfect communication channels. In
this research we handle the problem of data fusion within
the non-ideal case of uncertain observations. The sensors
involved in the data fusion process are subject to random
losses of measurements. The loss in measurements can be
due to individual sensor conditions or interruptions in the
communication channels.

The problem of missing measurements has been investi-
gated by many researchers. It was first addressed for a
class of linear filters by Nahi in Nahi. (1969) who obtained
the optimal state estimator for systems with missing mea-
surements. In the former reference, the uncertainty in the
observations was assumed to be independent and identi-
cally distributed (i.i.d.). The work in Jaffer and Gupta.
(1971) has generalized the work of Nahi where the un-
certainty is not necessarily i.i.d. The work in Carazo and
Perez (1994) extended Nahi’s work to the case where the
noise from the state and the noise from the measurements
are correlated. Later, the missing measurements problem
was considered from covariance assignment viewpoint in
NaNacara and Yaz (1994). In the latter reference, all the
possible estimation error covariance were characterized
and an upper bound on these estimation error covariances

was presented. In Nilsson and Bernhardsson (1998) and
Costa and Guerra (2002), the problem was formulated as
a jump linear system (JLS) switching between an open-
loop configuration and a closed-loop configuration. The
proposed new formulation enabled the authors in Nilsson
and Bernhardsson (1998) and Costa and Guerra (2002) to
study the convergence criteria of the expected estimation
error covariance. However, they restricted the Kalman gain
to be constant.

In recent years, the work in Yang et al. (2002) proposed
the formulation of the problem as a solution to two discrete
Ricatti difference equations. Using this formulation, they
found the sufficient conditions for the filter that guaran-
tees an optimized upper-bound on the estimation error
covariance. The proper formulation of the convergence
of the state error covariance was provided in Sinopoli
et al. (2004). The problem of missing measurements was
considered for a class of discrete-time linear systems that
suffer from modeling uncertainties in Wang et al. (2005).

The main difference between the aforementioned research
and the proposed results is the consideration of the missing
measurements problem in the context of multi-sensor
data fusion. This viewpoint of the problem required new
formulations and new derivations for the estimation filters.

The rest of the paper is organised as follows. The next
section presents the results of deriving the data fusion filter
for measurements from two linear sensors suffering from
missing measurements. Simulation results will be provided
in section 3. Section 4 concludes the paper.

2. OPTIMAL DATA FUSION FILTER

In this section, the optimal data fusion of data obtained
by two sensors will be presented. Generally, there are two
different situations:



Situation 1:

Both sensors have the same measurements arrival rate βk

and sequence of missing measurements.

Situation 2:

Each sensor has its own measurements arrival rate
β

(1)
k ,β

(2)
k . In this paper, we will consider this situation.

2.1 Generalized Inverse

Since the proposed technique does not require the noise
covariance of the observation process to be non-singular,
the use of the generalized inverse approach will be needed.
The generalized inverse is defined as follows:

Definition 1. A generalized inverse of a matrix A is a
matrix A# such that

AA#A = A

and if A is non-singular then

A# = A−1

The following lemma is important for applying the gener-
alized inverse technique

Lemma 2. (Elliot and van der Hoek. (April 2006)). The gen-

eralized inverse of the matrix

[

A B
C D

]

is the matrix
[

E F
G H

]

where

E = A# + A#BS
#
A CA#

F = −A#BS
#
A

G = −S
#
A CA#

H = S
#
A

and SA = D − CA#B.

2.2 Solution to Situation 2: Each Sensor Has Different
Data Loss Rate

In this section, we will provide the solution to the problem
of data fusion for measurements obtained from linear filters
subject to missing measurements. It is assumed that each
sensor has a different data loss rate.

Problem Formulation and Assumptions The system un-
der consideration is defined as

xk+1 = Ak+1xk + wk+1 (1)

and the observation process definition is

y
(12)
k = γ

(12)
k H

(12)
k xk + v

(12)
k (2)

where γ
(12)
k+1 =

[

γ
(1)
k+1 0

0 γ
(2)
k+1

]

and let β
(12)
k+1 =

[

β
(1)
k+1 0

0 β
(2)
k+1

]

.

where y
(i)
k ,i = 1, 2 is the output from the first and the

second sensor, wk+1 and v
(i)
k are the uncorrelated noise

sequences with zero mean and covariance E[wkwT
l ] =

Qkδkl and E[v
(i)
k v

(i)T
l ] = R

(i)
k δkl where δkl is the Kronecker

delta function and Hk is the sensor processing matrix. It
is assumed that

E[x0wk] = 0

E[x0v
(i)
k ] = 0

E[v
(i)
k v

(j)
k ] = 0

E[v
(i)
k wl] = 0

x̂0 = x0

E[x0x
T
0 ] = P0

These assumptions assigns the initial values for the state
estimate and error covariance. The assumptions also state
that there is no correlation between the state and the
noises or between the noise from the system and the noise
from the sensor.

The variable γ
(i)
k+1 is a Bernoulli sequence taking values 0

and 1 randomly, i = 1, 2 referencing the sensor number

and E[γ
(i)
k = 1] = β

(i)
k , where β

(i)
k is the percentage

of measurements that contain the signal and the noise
and it is assumed known in prior as it can be estimated
approximately by simulation sessions.

Unbiased Data Fusion Filter Form

Lemma 3. The filter form that guarantees estimation un-
biasedness will be

x̂(k + 1|k + 1)(12) = Ak+1x̂(k|k)(12) + K
(12)
k+1 [y

(12)
k+1

−β
(12)
k+1H

(12)
k+1 x̂(k + 1|k)(12)] (3)

Computation of the Optimal Filter Gain K
(12)
k+1

Lemma 4. The optimal filter gain K
(12)
k+1 will be of the form

K
(12)
k+1 = C

(12)
k+1D

(12)#
k+1 (4)

where C
(12)
k+1 = [ L1 L2 ]

L1 = E[(xk+1 − Ak+1x̂(k|k)(12))(y
(1)
k+1

−β
(1)
k+1H

(1)
k+1x̂(k + 1|k)(12))T ]

= β
(1)
k+1Ak+1P

(12)
k AT

k+1H
(1)T
k+1 + β

(1)
k+1Qk+1H

(1)
k+1 (5)

L2 = E[(xk+1 − Ak+1x̂(k|k)(12))(y
(2)
k+1

−β
(2)
k+1H

(2)
k+1x̂(k + 1|k)(12))T ]

= β
(2)
k+1Ak+1P

(12)
k AT

k+1H
(2)T
k+1 + β

(2)
k+1Qk+1H

(2)
k+1 (6)

Finding value of D
(12)
k+1, let D

(12)
k+1 =

[

L11 L12

L21 L22

]

L11 = E[(y
(1)
k+1 − β

(1)
k+1H

(1)
k+1x̂(k|k)(12))(y

(1)
k+1

−β
(1)
k+1H

(1)
k+1x̂(k|k)(12))T ]

= β
(1)2
k+1H

(1)
k+1Ak+1P

(12)
k AT
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(1)
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