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Abstract: Almost all the communication and control systems may suffer from insufficient
measurement data either due to sensor faults or communication errors. Standard Kalman filter
predicts state of the system and then tunes that with the help of newly arrived observations. But
in the case of insufficient data the question arises as how to compensate the loss of observation
in the state estimation. In this paper a robust estimation design is presented for a sampled
linear system where the sensor readings are subjected to random loss. Several easy-to-implement
approaches are discussed in this paper. A brief description is stated on the design structure,
affected state and minimum error covariance matrix. A comprehensive comparison survey for
these approaches is presented which shows various features like computational time, innovation,

convergence of the affected riccati equation, etc.
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1. INTRODUCTION

1.1 Nomenclature

Abbreviations and notations are defined which will be used
extensively in the paper.

LOOB Loss of Observations
OL Open loop (also will be known as
Cat-A approach)

Cat — BApp Category-B approaches

2k Actual observation vector

2k Calculated observation vector
(Filtered Response)

Zr Observation vector in LOOB case

K Kalman gain calculated in LOOB case

Pk{l} Predicted Error Covariance Matrix in
the LOOB case

Pk{Q} Filtered Error Covariance Matrix in
the LOOB case

m{,l} Predicted state estimate in LOOB case

m%} Filtered state estimate in LOOB case

We would call all the vectors and matriceSQin the loss of
observations case as approximated, e.g. Pk{ as approxi-
mated filtered error covariance at time step k.

1.2 Problem Statement

Since the landmark research by Kalman [1960], Kalman
filter has been extensively used in numerous research areas
and applications. R. Kalman presented a recursive solution
for state estimation for a discrete time LTT system. State
estimation is one of the key research area in both control
and communication networks. With new emerging tech-
nologies e.g. scale integration and microelectromechanical
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system, control and communication networks are coupling
together, Shi et al. [2005]. But loss of information is a non-
trivial case of study in both control and communication
systems. This loss may be due to faulty sensors, limited
bandwidth of communication channels, confined memory
space, mismatching of measurement instruments etc. And
this might be the reason that loss of observation in control
and communication systems remains a very hot research
topic for researchers during the last decade. Kalman fil-
ter, being a versatile tool for estimation of states and
parameters, could face a situation where data may not
be available for measurement update step. Sinopoli and
Schenato [2007], Micheli [2001], Schenato [2005] and Liu
and Goldsmith [2004], have studied LOOB, while running
the Kalman filter in a open loop fashion, i.e. whenever
observation is lost, the predicted quantities are processed
for next iteration, without any update.

In Sinopoli and Schenato [2007], the authors have dis-
cussed the affected stability of the state estimation and
shown a threshold limit of data loss, above which the ex-
pected value of error covariance becomes unbounded as the
time goes to infinity. Observations from different sensors
are treated collectively, contrary to Liu and Goldsmith
[2004], where different sensor readings are treated indi-
vidually; so observations may be fully received, partially
received or fully lost. In both of these papers, lower and
upper bounds of the threshold value for the loss have been
provided.

In Micheli [2001], delay in the data arrival is considered.
In Schenato [2005], a system might be subjected to both
LOOB and delay of observation at the same time. In
all these papers except ?], suggested designs of Kalman
filter, jump between an OL estimator when there is LOOB
and a closed loop estimator when the observation arrives
at destination. And hence, designed estimator is strongly
time-varying and stochastic in nature.



In order to avoid random sampling and stochastic be-
haviour of the designed Kalman filter, Khan and Gu [2009],
has proposed a few approaches to compensate the loss
of observations in the state estimation. Except the first
approach all of them are based on previous observations.
The authors have described all the possible merits and
demerits for those approaches. In this paper we review
and explore some analytic study for those approaches.
This paper is organized as: Section-2 describes the basic
Kalman filter design and algorithm which would be helpful
in understanding the LOOB algorithms. Section-3 presents
the proposed approaches in various forms along with the
algorithms. Section-4 is the main theme of this paper
which shows all the possible parameters which might be
affected from the LOOB along with the necessary discus-
sion for these proposed approaches. Section-5 describes
the example, simulated for evaluating these proposed ap-
proaches and their various features. And in the last section
the conclusion is presented.

2. BASIC STRUCTURE OF KALMAN FILTER

2.1 Plant Model

Consider the following discrete time LTI system
zp = Axp—1 + Bug—1 + wi—1 (1)
Zk = OZEk + vk (2)
where k € ® = {0,1,2,...}, z,w € R*, u € R}, 2 € ™,
A € R is the state transition matrix, B € R is the
input matrix, C' € R™*" output matrix and (zo, wg, vx) are

Gaussian, uncorrelated, white noise sequences with mean
(Zo,0,0) and covariance (Py, Q, Ri) respectively.

2.2 Kalman filter

Priori Step: This step is based on the system model.
Predicted state and the corresponding error covariance

are,

Thjh—1 = ATp_1)p—1 + Bug-1 (3)

Pyjr—1 = APy 131 AT + Qp1 (4)

The error (and thereafter, error covariance) can be derived
by substituting (1) and (3) in

Cklk—1 = Tk — Tglk—1 (5)

Kalman Gain: The optimal value of the Kalman gain
matrix is defined as,

K = Py 1CT[CPyjp1 CF + Ry (6)

The predicted entities are then updated with the help of
observation and Kalman gain as,

Posteriori Step:
Tijk = Tpjp—1 + Ki(2r — Cxpip—1) (7)

Py = Pyji—1 — KCPyjp—1
= (I — KiC)Pyjj—1 (8)

The above five equations (3)-(8), excluding (5), describe
the structure of the Kalman filter. The basic Kalman

Algorithm 1 :Basic Kalman Filter Algorithm

1: At time step: k — 1,
Prediction is carried out as
Tpjp—1 = ATp_1p—1 + Bug—1 : State Estimate
Pyjp—1 = APWCAT 4+ @y : Error Covariance Matrix

2: Time-step is updated

3: zp(= Cxg + vi) : Observation arrives

4: Calculate (2 — Cwpp—1): Innovation (or residual)
vector

5: Calculate (C’Pk‘k_lCT + Ry) : Innovation matrix

6: Calculate K = Pk‘k_lcT(OPk‘k_lcT + Rk)71
Kalman Gain matrix

7: Measurement update step :
Tklk = Tk|k—1 + Ki (2 — C’xk‘k_l): Updated State and
Pyr = (I — KxC)Py—1: Updated Error Covariance
Matrix

8: Return to step(1) i.e. Prediction;

filtering can be summarized in the following algorithm as
this would be helpful in the OL estimation algorithm and
Cat-B estimation algorithm. Basic Kalman filter can be
analyzed with respect to various features, like innovation
vector and matrix, measurement update step, covariance
matrices and convergence to a constant solution etc.

3. APPROACHES FOR LOOB

We consider the case when in equation (7) (step-4 in
the basic Kalman filter algorithm), the observation vector
(z) is not available. To compensate this unavailability
is the main concern of this paper. We discuss several
approaches to offset this unavailability. It can be seen that
the designed filter is still converging to the same constant
solution, once the observations are available again. The
other features of basic Kalman filter will also be discussed.
The approaches are classified in two categories. Category-
A consists of only one approach known as Open Loop
(OL), which has been studied in the papers mentioned
earlier. The reason it has been place alone in Cat-A is that,
it does not depend on the past data. Category-B consists
of four approaches, all of which are based on previous
observations. Although in Cat-B, many other approaches
could be introduced, at the moment only four of them
are sufficient to provide the basic concept of utilizing
the previous observations. These approaches have various
advantages and disadvantages which will be explained
shortly.

For simplicity, define a variable 7, such that

| 1, if there is no LOOB at time step k 9
T = 0, otherwise (9)

In OL technique whenever data is lost (i.e. 7, = 0), no
filtration (posteriori step) is performed, contrarily Cat-
B approaches utilize previous observations to form an
approximation to carry out the measurement update step.
The approximated observation vector Z in Cat-B ap-
proaches can be represented in a unified form:

p
Zk+1 = g QG Zf—i
i=0

where the weights «;’s are non-negative and satisfy,

(10)
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