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Abstract: In this paper, we study the stabilization problem of nonholonomic four-wheeled
vehicles with state constraints. Different from the existing approach where usually the system is
transformed into a chained form or a nonholonomic integrator, we deal with the system directly
without any transformation, by using finite-time stabilization method repeatedly in a piecewise
manner. The main control strategy is to divide the whole procedure into five stages, and to design
a finite-time stabilizing controller in each stage so that the vehicle’s steering angle and attitude
angle reach desired values. The desired values are computed depending on the vehicle’s states
so that the vehicle moves between two switching lines (corresponding to the state constraints)
and finally reaches the desired terminal point. Copyright c© 2009 IFAC
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1. INTRODUCTION

In this paper, we consider stabilization of a class of
nonholonomic systems, namely four-wheeled vehicles with
state constraints. It is known that generally nonholonomic
systems do not satisfy the so-called Brockett’s stabiliz-
ability condition (Brockett, 1983), and thus they can not
be asymptotically stabilized to their equilibrium points
by any continuously differentiable, time invariant, state
feedback control laws (Brockett, 1983; Bloch et al., 1992).
For this reason, there have been a large quantity of works
on the stabilization problem of nonholonomic systems in
the last two decades, including the efforts of finding contin-
uous, time varying control laws (Pomet, 1992; M’Closkey
& Murray, 1993), discontinuous ones (Bloch et al., 1992; de
Wit & Sørdalen, 1992; Astolfi, 1996) and middle strategies
(discontinuous and time varying) (Sørdalen & Egeland,
1993; M’Closkey & Murray, 1995). Another important
approach is the hybrid control method proposed by Hes-
panha & Morse (1999), where four controller candidates
and a switching strategy are proposed for nonholonomic
integrators and as a result exponential stability is achieved.
However, to utilize the approach in Hespanha & Morse
(1999) for the present four-wheeled vehicle, one needs to
transform the system into a chained form and then a
nonholonomic integrator form, while these forms can not
deal with the case of involving state constraints.

For this purpose, we here propose a switching control
strategy without making any system transformation. The
idea is based on finite-time stabilization method. It is
known that finite-time stability is totally different from
Lyapunov stability in the sense that it requires a system’s

state should reach an equlibrium point in finite time. It
has been shown in Bhat & Bernstein (2000) that finite-
time stabilization method is effective for a wide class
of nonholonomic systems. Motivated by the approach
and the observation in Bhat & Bernstein (2000), we
seek the possibility of dealing with state constraints in
nonholonomic four-wheeled vehicle systems by using finite-
time stabilization method.

The main design strategy of our switching controllers is
to divide the control procedure into five stages, and to
design a finite-time stabilizing controller in each stage
so that the vehicle’s steering angle and attitude angle
reach desired values. The desired values are computed in a
constructive manner corresponding to the vehicle’s states
so that the vehicle moves between two switching lines and
finally reaches the desired terminal point.

The remainder of this paper is organized as follows. In
Section 2, we give some preliminaries mainly concerning
finite-time stability and stabilization method. In Section
3, we describe the four-wheeled vehicle system and the
control problem on hand. Section 4 is devoted to detailed
description of the switching control procedure based on
finite-time stabilization method. Then, Section 5 presents
a numerical example, and finally Section 6 concludes the
paper.

2. PRELIMINARIES

In this section, we briefly summarize the concept and
some results of finite-time stability and stabilization (or
finite-time stabilizing controller) for systems described by
differential equations. More details in this area can be



found in Bhat & Bernstein (2000) and Haimo (1986). The
descriptions here are also based on these references.

Consider an autonomous system described by
ẋ = f(x) (1)

where x ∈ Rn, f : D → Rn is a local map from an open
set D ⊂ Rn into Rn. Also assume that xe = 0 is an
equilibrium point of the system, i.e., f(0) = 0.

Let the solution of (1) with the initial condition x(0) = x0

be x(t; 0, x0). Then, the zero equilibrium point of (1)
(or simply the system (1)) is called finite-time stable
(convergent) if there is an open neighborhood of U ⊂ D
including the origin and a function Tx : U → (0,∞),
such that for ∀x0 ∈ U , the solution x(t; 0, x0) is well
defined on [0, Tx(x0)) but x(t; 0, x0) ∈ U \ {0}, and
limt→Tx(x0) x(t; 0, x0) = 0. When the above is true, the
system (1) is called a finite-time differential equation.

An example of finite-time stable system is
ẋ = −xα (2)

where x is a scalar variable, α = a
b

and a, b are positive
odd numbers satisfying a < b. Then, the solution of (2) is

x(t) =

{
±[−(1 − α)t + C]

1
1−α (t ≤ T )

0 (t ≥ T )

where C = [x(0)]1−α and T = C
1−α . It is obvious that

the solution reaches zero in finite-time T depending on
the initial value and the solution is well defined in forward
time. Fig. 1 depicts the state trajectory in case of α = 1

3
and x(0) = 5.
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Fig.1. Finite-Time Convergence of ẋ = −x
1
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Note that for the system (2) the finite time T = C
1−α

depends on the initial state x(0) and the parameter α.
For example, for any fixed initial state x(0), the finite
time with α = 1

3 is larger than that with α = 1
5. This

observation will be used later to adjust convergence time
for four-wheeled vehicles.

The following theorem is used to prove the finite-time
stability of differential equations, which can be regarded
as a Lyapunov stability theory based condition.

Lemma 1. Suppose that there exists a continuous func-
tion V : D → R+ such that

• V is positive definite.

• There exist real numbers c > 0 and α ∈ (0, 1) and an
open neighborhood U ⊂ D including the origin such
that

V̇ (x) + c (V (x))α ≤ 0 , ∀x ∈ U \ {0} .
Then the origin is a finite-time stable equilibrium of (1).

Next, it is natural to define finite-time stabilization and
stabilizability of the system

ẋ = f(x, u) (3)

where x is the same as in (1) and u ∈ Rm is the control
input. If there exists a state feedback u = ψ(x) such that
the closed-loop system ẋ = f(x,ψ(x)) is finite-time stable,
then we say the system (3) is finite-time stabilizable (via
state feedback). In that case, we call the state feedback
u = ψ(x) a finite-time stabilizing controller.

In the end of this section, we review an important result for
finite-time stabilization established in Bhat & Bernstein
(1998). The objective is to seek a continuous time-invariant
feedback controller u = ψ(x, y) for the double integrator
system

ẋ = y , ẏ = u (4)

such that the closed-loop system is finite-time stable.

Lemma 2. The origin of (4) is globally finite-time stable
under the feedback control law

u = −sgn(y)|y|α − sgn(φα(x, y))|φα(x, y)| α
2−α (5)

with arbitrary α ∈ (0, 1), where

φα(x, y) ≡ x+
1

2 − α
sgn(y)|y|2−α .

The above result is extended to a rigid body rotating about
a fixed axis with unit moment of inertia, described by

θ̈ = u (6)

where θ is the angular displacement from some reference
and u is the control torque. Eqn. (6) can be rewritten
in the form of (4) by substituting x = θ and y = θ̇.
However, for every (x, y) ∈ R2, the states (x ± 2nπ, y),
n = 0, 1, 2, · · ·, correspond to the same physical state of
the rigid body, and thus we need to require that (±2nπ, 0),
n = 0, 1, 2, · · ·, should be finite-time stable. To achieve this
goal, the feedback controller (5) should be modified as

u = −sgn(y)|y|α − sgn(sin(φα(x, y)))| sin(φα(x, y))| α
2−α . (7)

The controllers (5) and (7) will be repeatedly used with
some modification later in Section 4.

3. PROBLEM FORMULATION

The nonholonomic four-wheeled vehicle under consider-
ation is depicted in Fig. 2, where the distance between
the front wheels and the rear ones is L, the position of
the middle point of the rear wheels is (x, y), the vehicle’s
attitude angle is θ and the steering angle is φ satisfying
a reasonable constraint |φ| ≤ φmax. Assume that the
vehicle’s velocity is v, the steering angular velocity is ω.
Furthermore, assume that the control inputs are the steer-
ing angular acceleration u1 and the velocity’s acceleration
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