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Abstract: Control of nonlinear systems exhibiting complex dynamic behavior is a challenging task 
because such systems present a variety of behavioral patterns depending on the values of physical 
parameters and intrinsic features. Understanding the behavior of the nonlinear dynamic systems and 
controlling them at the desired conditions is important to enhance their performance. In this work, a soft 
sensor based nonlinear controller strategy is presented and applied to control a chemical reactor that 
exhibit multi-stationary unstable behavior, oscillations and chaos. In this strategy, an extended kalman 
filter is designed to serve as a soft sensor that provides the estimates of unmeasured process states. These 
states are used as inferential measurements to the nonlinear controller that is designed in the framework of 
globally linearizing control. The results evaluated for stabilizing the reactor for different conditions 
including deterministic and stochastic disturbances show the better performance of the soft sensor based 
nonlinear control strategy over that of a PID controller with modified feedback mechanism. 
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1. INTRODUCTION 

Control of nonlinear systems exhibiting complex dynamic 
behavior is a challenging task because such systems present a 
variety of behavioral patterns depending on the values of 
their physical parameters and intrinsic features. Depending 
on the parameter values, these systems can operate at steady 
state or present oscillatory and chaotic motions. In case of 
chemical reactors, such unconventional behavior can be 
attributed to some sort of nonlinear interaction between 
several quantities that can be stored or sometimes inter-
converted within the system. The oscillatory and chaotic 
phenomenon displayed by the chemically reacting systems 
has desirable as well as undesirable features. The desirable 
feature of chaos is that it enhances mixing and chemical 
reactions and provides a vibrant mechanism for transport of 
heat and mass. On the other hand, the intrinsic features of the 
reacting systems with the interactive influence of chemical or 
thermal energy may cause irregular dynamic behavior 
leading to degraded performance. In such situations, chaos is 
considered as undesirable and should be avoided. The 
presence of chaotic behavior in chemical reactors has been 
demonstrated theoretically and experimentally by several 
researchers [Uppal et al. (1976); Schimitz et al. (1979); Wu 
(2000); Blanco and Bandoni (2007)]. Understanding the 
dynamic behavior of the chaotic reactor and controlling it 
under stable operating conditions is important to enhance the 
performance of the reactor. Various methods including a 
proportional-Integral (PI) controller [Pellegrini and Biardi 
(1990)] and a modified PI/PID controller [Bandyopadhyay et 
al. (1997)] have been used for controlling and operating the 
chaotic reactors under favorable conditions. However, the 

complex nature of dynamical systems severely limits the use 
of conventional linear controllers to provide the desired 
operating performance. Therefore, advanced control 
strategies have become an important part of control structure. 
But most advanced controllers rely on mathematical models 
of the process incorporating process state variable 
information in controller formulation. In most systems, the 
state variables desired by the controller can not be easily 
available through measurement or available with large 
measurement delays. Such timely unavailable state variables 
may restrict the implementation of advanced model based 
controllers for nonlinear systems.  If  such  inaccessible  or  
non-measurable  state variables  can  be made available either 
by hard  sensing  or   soft  sensing  techniques. The nonlinear 
model based controllers can be implemented effectively. The 
measurement problems and the delays associated with the 
hard sensors have led to the development of soft sensors as 
alternative measurement tools. Model based estimation 
methods such as extended versions of Kalman filters / 
nonlinear observers can serve as soft sensors by means of 
providing reliable estimates for unmeasured variables in 
nonlinear dynamic systems. The potentiality of model based 
methods for state estimation have been reported for various 
systems [Venkateswarlu and Gangiah (1992); Schelur and 
Schmidt (1993); Sargantanis and Karim (1994); Jana et. al 
(2006)]. 

This work presents a soft sensor based nonlinear controller to 
alter the dynamics of a chaotic chemical reactor and drive the 
system response to the desired condition. An extended 
Kalman filter (EKF) is designed and used as a soft sensor to 
provide the reactor species concentrations that serve as 
inferential measurements to the nonlinear controller. The 



controller is designed in the globally linearizing control 
(GLC) framework of Kravaris and Chung (1987). The 
sensitivity of the soft sensor is studied with respect to the 
effect of measurement noise as well as the estimator design 
parameters. The proposed soft sensor based nonlinear 
controller is evaluated by applying it for the control of a non-
isothermal continuous stirred tank reactor (CSTR) that 
exhibit multi-stationary unstable behavior, oscillations and 
chaos. The controller is also studied towards the influence of 
stochastic and deterministic load disturbances. Further the 
results of the present control strategy are compared with 
those of a proportional-integral-derivative (PID) controller 
that involve a modified feedback mechanism. 

2. SOFT SENSOR BASED NONLINEAR CONTROL 
STRATEGY   

The strategy consists of an extended Kalman filter (EKF) for 
estimating unmeasured process variables of a nonlinear 
system. These estimated states serve as inferential 
measurements to a globally linearizing controller (GLC) 
which drives the system response to the desired condition.  
The schematic of this strategy is shown in Fig. 1.  

2.1 Process Representation 

The mathematical model of the nonlinear dynamical system 
can be expressed by the following state space form 

( ) ( )( ) ( ) ( ) 00   ,, xxtwttxftx =+=&        (1)                                                           
where x(t) is n-dimensional state vector, f is a nonlinear 
function of state x and w is additive Gaussian noise with zero 
mean. The linear measurement relation is given by  

             (2) ( ) ( ) ( )kkk tvtHxty +=

The nonlinear measurement model with observation noise 
can be expressed as  

( ) ( )( ) ( kkk tvtxhty += )            (3)  
where h is a nonlinear function of state x and v  is the vector 
of observation noise. The state vector, x(t), of (1) can be 
estimated from the known process measurements, y(tk), of (2) 
using nonlinear estimation techniques. The statistical 
expectations of  the covariance matrices associated with x(0), 
w(t) and v(tk) are referred as the initial state covariance 
matrix, P0, process noise covariance matrix, Q, and 
observation noise covariance matrix, R. The matrices P0, Q(t) 
and R(tk) are generally selected as estimator design 
parameters which are used to reflect errors in the initial state, 
process model and process measurements. 

2.2 Extended Kalman Filter (EKF) 

State estimation methods based on filtering or observation 
can deliver reliable on-line estimates for state variables 
defining a process on the basis of available process 
knowledge including a dynamic model and the incoming data 
from process measurement sensors. In this study, an extended 
Kalman filter is used as a soft sensor to provide the estimates 
of unmeasurable state variables. By this algorithm, state 

estimation is carried out through recursive implementation of 
the prediction and correction equations. More details 
concerning the EKF for state estimation in nonlinear systems 
can be referred to elsewhere [Gilles (1987); Venkateswarlu 
and Jeevan Kumar (2006)]. 

2.2.1Prediction equations 

By starting with an initial estimate xo and its covariance Po at 
time tk-1 and no measurements are taken between tk-1 and tk, 
the propagating expressions for the estimate and it's 
covariance from tk-1 to tk are, 

( ) ( )( )tttxfttx kk ,/ˆ/ˆ 11 −− =&            (4) 
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where F(x(t/tk-1),t) is the state transition matrix whose i,jth 
element is given by  
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The solution of the propagated estimate x(t/tk-1) and its 
covariance P(t/tk-1) at time tk are denoted by x(tk/tk-1) and  
P(tk/tk-1). By using measurements at time tk,, the update 
estimate x(tk/tk) and  P(tk/tk) are computed. 

2.2.2 Correction equations 

 The equations to obtain corrected estimates are 

( ) ( ) ( ) ( )( )[ ]11 )(ˆˆ −− −+= kkkkkkkk ttxhtytKttxttx  (7) 
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The recursive initial conditions for state and covariance are 
defined by 
( ) ( )kkkk /ttx  /ttx ˆˆ 1 =−                                (11)  

( ) ( )kkkk /ttP/ttP =−1                                              (12)  

Fig. 1. Schematic of soft sensor based nonlinear control. 
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