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Abstract: Very large-scale dynamical systems, even linear time-invariant systems, can present
significant computational difficulties when used in numerical simulation. Model reduction is
one response to this challenge but standard methods often are restricted to systems that
are presented as standard first-order realizations; in the frequency domain such systems will
be linear in the frequency parameter. We consider here dynamical systems with a nonlinear
frequency dependence; systems for which either a standard first-order realization is unknown or
inconvenient to obtain. Such systems may nonetheless have realizations that reflect important
structural features of the model and we may wish to retain this structure in any reduced model
used as a surrogate. In this work, we present a structure-preserving model reduction algorithm
for systems having quite general nonlinear frequency dependence. We take advantage of recent
algorithms that produce high quality rational interpolants to transfer functions that only require
transfer function evaluation, thus allowing for nonstandard realizations that are nonlinear in the
frequency parameter. However, our final reduced model will have a structure that reflects the
structure of the original system, and indeed, may not have a rational transfer function. We
illustrate our approach on a benchmark problem that offers a transcendental transfer function.
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1. INTRODUCTION

Direct numerical simulation of dynamical systems plays
a crucial role (and at times may be the only option) in
studying a great variety of complex physical phenomena
with applications ranging from signal propagation in the
nervous system, to heat dissipation in complex micro-
electronic devices, to vibration suppression in large wind
turbines, and to timely prediction of storm surges before
an advancing hurricane. However, the ever-present need
for greater model resolution leads to the inclusion of ever-
greater detail at the modeling stage. The resulting large-
scale dynamical systems, even those that are ‘simple’ linear
time-invariant systems, can present significant computa-
tional difficulties when used in numerical simulation due
to their sheer size; hence there is a persistent need to
approximate such large complex dynamical systems with
smaller, yet high accuracy, approximations. This is the
goal of model reduction: one constructs simpler (reduced
order) models, which are much easier and faster to sim-
ulate (hence requiring far fewer computational resources)
while retaining characteristics close to the original system.
These simpler reduced models can then serve as efficient
surrogates for the original, replacing them as components
in larger systems; facilitating rapid development of con-
trollers for real time applications; and enabling optimal
system design and uncertainty analysis.

In this paper, we will focus on model reduction of stable
single-input/single-output (SISO) linear dynamical sys-

tems whose behavior is described via a transfer function
H(s). The extension of our approach to multi-input/multi-
output systems may be developed in an entirely analogous
and straightforward way, but here we will only focus on
the SISO case to keep the presentation both simple and
concise. We assume that the transfer function H(s) of the
underlying system has a generalized realization

H(s) = C(s)TK(s)−1B(s) (1)

where C : C → Cn, B : C → Cn, K : C → Cn×n are
analytic in the right half plane, and K(s) has full rank
throughout the right half plane.

The state space dimension of the underlying dynamical
system typically is n and we will refer to this as the order
of the system, even though H(s) may have a significantly
larger (even infinite) number of poles. We are interested
in settings where n could reach hundreds of thousands
or more. We note that the state-space representation in
(1) allows a much richer set of dynamical systems than
those represented by standard first-order realizations, i.e.,
H(s) = C(sE−A)−1B where E,A ∈ Rn×n, and B,CT ∈
Rn are all constant quantities. One prominent example
of the form in (1) are systems with internal delays such
as H(s) = C(sE − A0 − A1e

−τs)−1B where τ is the
internal delay. Note that this transfer function cannot
be represented in a standard first-order form with finite
dimensional choices for E, A0, and A1. In §4, we consider
two models in the form of (1). For example, the model in
§4.1 has a transfer function of the form H(s) = C((es −
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in settings where n could reach hundreds of thousands
or more. We note that the state-space representation in
(1) allows a much richer set of dynamical systems than
those represented by standard first-order realizations, i.e.,
H(s) = C(sE−A)−1B where E,A ∈ Rn×n, and B,CT ∈
Rn are all constant quantities. One prominent example
of the form in (1) are systems with internal delays such
as H(s) = C(sE − A0 − A1e

−τs)−1B where τ is the
internal delay. Note that this transfer function cannot
be represented in a standard first-order form with finite
dimensional choices for E, A0, and A1. In §4, we consider
two models in the form of (1). For example, the model in
§4.1 has a transfer function of the form H(s) = C((es −
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goal of model reduction: one constructs simpler (reduced
order) models, which are much easier and faster to sim-
ulate (hence requiring far fewer computational resources)
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These simpler reduced models can then serve as efficient
surrogates for the original, replacing them as components
in larger systems; facilitating rapid development of con-
trollers for real time applications; and enabling optimal
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of the system, even though H(s) may have a significantly
larger (even infinite) number of poles. We are interested
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or more. We note that the state-space representation in
(1) allows a much richer set of dynamical systems than
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1)A2 + s2A1 + I)−1B where A2 and A1 are constant
matrices, and C and B are constant vectors.

Our goal will be to generate, for some r � n, a reduced
dynamical system using a Petrov-Galerkin projection: se-
lect Vr ∈ Rn×r and Wr ∈ Rn×r such that WT

r K(s)Vr

is nonsingular in the right-half plane (ideally). Then, the
reduced transfer function is

Hr(s) = Cr(s)Kr(s)
−1Br(s) (2)

where Cr(s) = C(s)Vr ∈ Cr; Br(s) = WT
r B(s) ∈

Cr; and Kr(s) = WT
r K(s)Vr ∈ Cr×r. Consider the

aforementioned delay example H(s) = C(sE − A0 −
A1e

−τs)−1B. In this case, the reduced transfer function

will have the form Hr(s) = CVr(W
T
r EVr −WT

r A0Vr −
WT

r A1Vre
−τs)WT

r B. The associated reduced dynamical
model preserves the original system structure yet the
dynamics evolve in a much smaller state-space. We will
choose Wr and Vr so as to enforce rational interpolation
conditions; Hr(s) will interpolate H(s) at selected points
in the complex plane.

We will assume that H(s) is an H2-function where H2

denotes the set of complex functionsH(s) that are analytic
in the open right half plane {s = x+ y ∈ C : x > 0} and

such that supx>0

∫ +∞
−∞ |H(x+ ıy)|2dy < ∞. Note that H2

is a Hilbert space with the inner product

〈G,H〉H2
=

1

2π

∫ +∞

−∞
H∗(ıω)G(ıω)dω (3)

and the corresponding norm

‖H‖H2
=

√
〈H,H〉H2

=

√
1

2π

∫ +∞

−∞
| H(ıω) |2 dω . (4)

We will look for structure-preserving reduced order models
that are high-fidelity approximations in the H2 norm.

The rest of the paper is organized as follows: In §2,
we give the necessary background for model reduction
that allows passage from generalized realizations as in
(1) to structure-preserving reduced models as in (2). In
§3, we introduce an algorithm for determining structure-
preserving interpolatory reduced models that are high-
fidelity approximations with respect to the H2 norm. We
present two numerical examples in §4.

2. INTERPOLATORY MODEL REDUCTION OF
GENERALIZED REALIZATIONS

We review here the basic interpolatory framework for
building reduced models for generalized realizations hav-
ing the form in (1) that preserve structure as in (2). These
tools form the foundation of our approach described in §3.

2.1 Interpolatory Projections for Generalized Realizations

For linear dynamical systems with generic first-order re-
alizations, i.e., H(s) = C(sE−A)−1B, various model re-
duction methods exist to produced high-fidelity or in some
cases optimal reduced models. Examples include Gramian
based methods such as Balanced Truncation (Mullis et al.
(1976); Moore (1981)) and Hankel Norm Approximation
(Glover (1984)), or interpolatory methods such as Iterative
Rational Krylov Algorithm (Gugercin et al. (2008)). For

more details on model reduction of standard first-order
systems, we refer the reader to Antoulas (2005); Beattie
and Gugercin (2015); Baur et al. (2014); Antoulas et al.
(2010) and the references there in. However, for generalized
realization H(s) = C(s)K(s)−1B(s) with nonlinear fre-
quency dependence throughout the state-space quantities,
many of the generic approaches do not apply except for
special cases such as for second-order structure H(s) =
C(s2M + sK + G)−1B; see, e.g., Bai and Su (2005); Su
and Craig Jr (1991); Chahlaoui et al. (2005); Meyer and
Srinivasan (1996); Reis and Stykel (2008). See also recent
work of Breiten (2015) using frequency domain formula-
tions of Gramians for integro-differential equations.

Here we use interpolation. Beattie and Gugercin (2009) es-
tablished the framework for interpolatory model reduction
of systems with a generalized realization. The following re-
sult describes how to construct reduced-order interpolants
via projection.

Theorem 1. (Beattie and Gugercin, 2009, Theorem 3) Let
H(s) = C(s)K(s)−1B(s) be given as in (1). Suppose r
distinct points, {si}ri=1, are chosen in the right half plane.
Define Vr ∈ Cn×r and Wr ∈ Cn×r as:

Vr = [K(s1)
−1B(s1), · · · ,K(sr)

−1B(sr)]

and

WT
r =



K(s1)

−1C(s1)
T

...
K(sr)

−1C(sr)
T


 .

Define Kr(s) = WT
r K(s)Vr and assume that Kr(si) is

nonsingular for i = 1, 2, 3, ..., r. Define further:

Br(s) = WT
r B(s), and Cr(s) = C(s)Vr. (5)

Then with Hr(s) = Cr(s)Kr(s)
−1Br(s) we have

H(si) = Hr(si) and H′(si) = H′
r(si) (6)

for i = 1, ..., r where H′(si) denotes the first derivative
of H(s) evaluated at si and H′

r(si) denotes the first
derivative of Hr(s) evaluated at si.

Once the interpolation points have been selected, Theorem
1 describes precisely how one may construct a structure-
preserving interpolant via a Petrov-Galerkin projection.

2.2 Loewner framework for Hermite Interpolation

The projection-based framework of Theorem 1 requires
access to internal dynamics to construct the model re-
duction bases Vr and Wr. However in some applications,
one does not have access to a description of internal
dynamics and only transfer function measurements are
available. The Loewner framework of Mayo and Antoulas
(2007) resolves this issue: It only requires evaluation of the
transfer function (and its derivative H′(s) if interpolation
points are repeated). As long as the transfer function
H(s) = C(s)K(s)−1B(s) can be sampled, one can produce
a rational reduced model that interpolates the original
system. Given a transfer function H(s) and a set of initial
points {si}ri=1, define

(Er)i,j :=



− (H(si)−H(sj))

si − sj
if i �= j

−H′(si) if i = j
(7)
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