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Abstract: Nonuniform discretizations of state and control profiles and model reduction are essential
to approximate discretized DAE systems, capture multiple time scales of the state profiles and reduce
the size of nonlinear programming (NLP) subproblems for off-line optimal control problems. These
discretizations are often dictated by dynamic characteristics that depend on the system application.
However, nonuniform grids in Nonlinear MPC (NMPC), which we denote as input and state blocking
strategies, may not lead to recursive feasibility, a key property for nominal stability that follows directly
with uniform grids. In this study, we analyze a class of NMPC blocking strategies and show that nominal
stability and input-to-state stability (ISS) can be preserved with these formulations. These strategies
are especially useful for large first principles models, as we demonstrate on a bubbling fluidized bed
(BFB) process that captures CO, from flue gas. With this case study we demonstrate that input and state
blocking, along with model reduction, leads to accurate state profiles, nominal and robust stability, far
less computation, and essentially the same NMPC performance as with uniform grids.
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1. INTRODUCTION

With increasing applications of NMPC, additional research is
needed for the efficient solution of NLP subproblems for larger
plant systems. This study explores input and state blocking
along with model reduction within NMPC strategies. These
features arise in the use of nonuniform grids derived from direct
transcription strategies in optimal control, through high order
collocation discretizations with finite element grids. The con-
struction of these grids is tailored to the dynamics of particular
applications. In this way accurate state and control profiles can
be obtained efficiently, and nonuniform grids are frequently
considered for off-line implementations of dynamic optimiza-
tion. This study expands this task to on-line controllers as well.

A closely related problem to nonuniform grids for NMPC is the
use of input or move blocking in MPC. This problem is widely
applied in commercial implementations of DMC and other
MPC controllers, through the specification of output prediction
horizons and shorter horizons for manipulated variables (see,
e.g, Prett and Garcia (1988)). On the other hand, when terminal
costs and constraints are imposed, input blocking raises sev-
eral challenges with respect to stability and robustness proper-
ties. In particular, most moving horizon input blocking (MHB)
schemes are not recursively feasible and this can complicate the
stability analysis.

Stability and robustness properties of various input blocking
schemes have been analyzed over the past decade for linear
MPC. Cagienard et al. (2007) developed a general cyclic block-
ing scheme based on input deviations from an unconstrained
feedback controller. This blocking scheme cycles over a time
period and maintains recursive feasibility, even for terminal
conditions. However, the controller moves are more restricted
through these input deviations and optimal performance of

the blocked MPC strategy is not guaranteed. Gondhalekar and
Imura (2010) establish a blocking scheme that applies to all
blocking patterns by initially establishing feasibility regions
for the blocked controller. Their approach then finds the least
restrictive moves for a given blocking scheme, and ensures re-
cursive feasibility, but without stability guarantees. Shekhar and
Maciejowski (2012) develop a blocking framework for vari-
able horizon MPC, which allows shifting and transformation
of blocking patterns as the horizons evolve. They include a ro-
bust stability analysis using contraction properties and require
terminal constraints on the MPC problem.

These studies show that an alternative shifted blocking (SB)
scheme, where the left-most interval is removed and a right-
most interval is added as the horizon shifts, is recursively feasi-
ble if appropriate terminal conditions are imposed. A particular
case considered in Wiirth and Marquardt (2014) is based on
approximations to infinite horizon NMPC, where a shrinking
horizon is maintained over infinite time. Under these conditions
approximations to MHB and SB schemes are equivalent and
recursively feasible.

In the next section we describe our MHB and SB schemes
for nonuniform grids and review nominal and ISS stability
properties for NMPC. Based on these we modify the NLP
subproblem for blocked NMPC to enforce strong descent of
the Lyapunov function at each sampling time. This leads to an
NMPC strategy that embeds both MHB and SB schemes and
leads to robust stability guarantees. Section 3 demonstrates our
blocking NMPC strategy on a bubbling fluidized bed (BFB)
process, using both first principles and reduced models, along
with input and state blocking. Section 4 concludes the paper
and discusses areas for future work.
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2. INPUT AND STATE BLOCKING FOR NMPC

Consider the following discrete-time nonlinear dynamic model
of the plant with uncertainties:

x(k+1) = f(x(k), u(k), w(k))
= f(x(k), u(k)) +d(x(k), u(k), w(k)) (1)
where x(k) € R"™, u(k) € R™ and w(k) € R™ are the plant

states, controls and disturbance signals, respectively, defined at
time steps #; with integers k > 0. The mapping f : R
R with f(0,0) = 0 represents the nominal model, while the
term d : Rt s R is used to describe modeling errors,
estimation errors and disturbances. We assume that f(-,-) and
d(-,-,-) are Lipschitz continuous, and that the noise w(k) is
drawn from a bounded set 7.

We also consider a blocking pattern v = Mg where v =
i vl,...,vh_]T and g are the blocked inputs. After Ny in-
tervals the blocking M matrix incorporates n; blocks, each of
length N;, j=1,...,n;, as follows:

Luxng 0 0 ... 0

0 E 0...0

M= 2

0 0 0 .. E,
where the matrices £, j = 1,...ny, consist of N; stacked identity

matrices of order n,.

Our blocked nonlinear model predictive controller (NMPC) is
defined over a horizon where e 0N + = N. We assume that

the states and controls are restrlcted to the domains X and U,
respectively. Xy is the terminal set with Xy C X. The set U is
compact and contains the origin; the sets X and X are closed
and contain the origin in their interiors. We consider a stage
cost given by y(-,-) : R — R, while the terminal cost is
denoted by P(-) : R — R; both are assumed to be Lipschitz
continuous. Moreover, we apply the robust problem formula-
tion in Yang et al. (2015) and relax X and Xy with £; penalty
terms, with a sufficiently large penalty parameter v. Writing X
and X as inequalities g(z;) < 0and g(zy) <0, respectively, and

redefining 8 (21) = max(0,gV)(z1)). W(z.v1) := yla,v) +
Vlig+(z)| and W(zy) := ¥(zn) + Vllg+(an)]|, We obtain the
following MHB reformulation:

N-1
V(x(k)) : frvr[llzlll‘P w)+ Y, wiz,v) 3)
=0
S.t. 24 :f(zZ,vl)J =0,...Ny—1
) Jj—1 J
o1 =fw), 1= Y Ny, Y Ny —=1,j=1,....m
/=0 /=0

z0 = x(k),v=Mgq,v, € U.

Note that the redefined objective function in (3) is no longer
differentiable everywhere, but still Lipschitz continuous, with
Lipschitz constant Ly, which is sufficient for the stability anal-
ysis in Section 2.1.

In (3) we note that a coarser approximation is allowed for the
differential-algebraic model, z;1 = f/(z;,v;). This model leads
to state profiles described by finite elements of different lengths
in each block. The longer elements are sufficient for slower
time scales and lead to a significant reduction in NLP variables.
The accuracy of these models is based on problem dependent
features where the blocking pattern, N;,j = 1,...n, is deter-

mined by the system dynamics. As a result the blocked state
model (based on collocation on nonuniform finite elements) is
assumed to be a high fidelity approximation to the plant.
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Figure 1. Representation of MHB and SB schemes

Figure 1 gives a graphic representation of state and input
profiles in the proposed blocking schemes. From Figure 1 we
can see that MHB is not recursively feasible, neither for input
nor state blocking. Instead, as described in Section 2.2, the state
and input feasibility error in MHB depends on choice of the
blocking pattern and treatment of model mismatch. Moreover,
as shown in Figure 1, we also consider a Shifted Blocking (SB)
strategy where v = Mg and

InuX(N()fw 0 O O
0 E, 0 ... 0
M= TR I )
0 0 ..Ey 0
0 0 .. 0 I,

The SB pattern modifies the MHB pattern by removing the
sampling time on the left and adding a sampling interval on the
right. The SB strategy is recursively feasible for the inputs and
states, as well as the terminal conditions. The NLP subproblem
for the SB pattern is given by:

V(x(k)): —fvnlzn‘l‘ N) Z v(z1,vi) (5)
15<] 1=0
s.t. Z[+1 :f(Zl,Vl) [=0,. -2
T+l = fJ(Zth )l = ( ZN . ZNJ»/ —2,j=1,...mp
j=0 J=0

v = f(zv—1,vN-1),20 = x(k),v=Mg,v; € U

2.1 Nominal and ISS Stability Properties

Stability properties of blocked NMPC are adapted from well-
known properties of the standard NMPC controller (Magni
and Scattolini (2007); Keerthi and Gilbert (1988)), with the
following assumptions:

Assumption 1. (Nominal Stability Assumptions for NMPC)
e The terminal penalty ¥(-), satisfies ¥'(z) > 0,Vz € X\ {0},
e There exists a local control law u = k(z) defined on Xy,
such that f(z,x¢(z)) € Xf,Vz € X, and W(f(z, k¢(2))) —
¥(z) < —y(z, k() Vz € Xy
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