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Abstract: We analyze the structure of the Euler-Lagrange (EL) conditions of a long-horizon
optimal control problem. The analysis reveals that the conditions can be solved by using block
Gauss-Seidel (GS) schemes. We prove that such schemes can be implemented in the primal
space by solving sequences of short-horizon optimal control problems. This analysis also reveals
that a traditional receding-horizon (RH) scheme is equivalent to performing a single GS sweep.
We have also found that we can use adjoint information from a coarse long-horizon problem to
construct terminal penalties that correct the policies of the RH scheme. We observe that this
scheme can be interpreted as a hierarchical controller in which a coarse high-level controller
transfers long-horizon information to a low-level, short-horizon controller of fine resolution. The
results open the door to a new family of hierarchical control architectures that can handle
multiple time scales systematically.
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1. BASIC NOTATION AND SETTING

We start by providing basic notation and defining the
technical problem. Relevant references are provided as we
proceed with the discussion. We consider the following
long-horizon optimal control problem:

min
z(·),u(·)

∫ T

0

ϕ(z(τ), u(τ), w(τ))dτ (1a)

s.t. ż(τ) = f(z(τ), u(τ), w(τ)), τ ∈ [0, T ] (1b)

z(0) = z̄. (1c)

Here, z(·), u(·), and w(·) are state, control, and disturbance
trajectories, respectively. The cost and system mappings
ϕ(·) and f(·) are assumed to be smooth.

We lift the long-horizon problem by partitioning the hori-
zon T into n stages. This lifting approach was proposed by
Bock and Plitt (1984) in the context of multiple-shooting.
We define the sets N := {0..n−1} and N− := N \{n−1};
and we assume the stages to be of equal length h := T/n.
The partitioning gives rise to the lifted problem,

min
zk(·),uk(·)

∑
k∈N

∫ h

0

ϕ(zk(τ), uk(τ), wk(τ))dτ (2a)

s.t. żk(τ) = f(zk(τ), uk(τ), wk(τ)), k ∈ N , τ ∈ [0, h]
(2b)

zk+1(0) = zk(h), k ∈ N− (2c)

z0(0) = z̄. (2d)

We will analyze the stage structure of the lifted optimal
control problem. In doing so we will reduce the notation
to a minimum, in such a way that it retains the essential
features of the structure we are interested in highlighting.
We first note that we do not consider inequality and path
constraints and we eliminate dependencies of the mappings
on the disturbances. These changes will not alter the stage

structure of the lifted problem. We transcribe the lifted
problem into a finite-dimensional nonlinear programming
problem by applying an implicit Euler scheme with m
inner stages of equal length δ := h/m (other discretization
schemes can also be applied). We define the sets of inner
discretization points M := {0..m − 1}. The discretized
problem is,

min
zk,j ,uk,j

∑
k∈N

∑
j∈M

ϕ(zk,j+1, uk,j+1) (3a)

s.t.

(νk,j+1) zk,j+1 = zk,j + δf(zk,j+1, uk,j+1), k ∈ N , j ∈ M
(3b)

(λk) zk,0 = zk−1,m, k ∈ N . (3c)

Here, νk,j are the dual variables of the inner dynamic
equations (3b), and λk are the dual variables of the stage-
transition equations (4b). The dual variables are scaled by
the constant 1/δ. We use the dummy parameter z−1,m :=
z̄ to simplify notation. We denote the discretized long-
horizon problem (4) as P. We simplify notation further by
eliminating the dynamic equations from the notation (3b).
This, again, does not alter the stage structure. We obtain
the compact problem,

min
zk,j ,uk,j

∑
k∈N

∑
j∈M

ϕ(zk,j+1, uk,j+1) (4a)

s.t. (λk) zk,0 = zk−1,m, k ∈ N . (4b)

A controller based on recursive solutions of P must capture
disturbance signals that evolve over multiple time scales
(e.g., noise, weather, prices) and must handle slow and fast
components of the dynamical system (e.g., fast and slow
chemical reactions, recycle systems). Despite advances in
computational methods for optimal control, this might
not be possible to do. This is is because the solution of
P might require very fine discretization meshes and/or
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expensive numerical integration procedures to capture
dynamic effects at all time scales. Reviews on the topic are
presented by Diehl et al. (2009) and Zavala and Biegler
(2009). We also note that the presence of multiple time
scales plays a role in the resolution and update frequency
of the control. For instance, as noted by Findeisen et al.
(2007), if disturbances are fast it is necessary to use a
compatible control resolution.

The complexity of P is traditionally addressed by using
a RH scheme which seeks to approximate the optimal
long-horizon policy by solving sequences of fine-resolution
short-horizon problems. In particular, one can solve the
following short-horizon problems sequentially for k =
0, ..., N − 1:

min
zk,j ,uk,j

∑
j∈M

ϕ(zk,j+1, uk,j+1) (5a)

s.t. (λk) zk,0 = zk−1,m. (5b)

Here, the initial state zk−1,m is fixed and is obtained from
the solution of the problem at k − 1. We will show that
this RH scheme is a block GS iteration applied to the
solution of the Euler-Lagrange (EL) conditions of (4).
This observation will help us derive hierarchical schemes
to address the intractability of P.

2. STRUCTURE OF EULER-LAGRANGE
CONDITIONS

We group variables by stages by defining the vectors
zk := (zk,0, ..., zk,m), uk := (uk,1, ..., uk,m), and νk :=
(νk,1, ..., νk,m). We thus obtain the block form of P,

min
uk

∑
k∈N

φ(zk,uk) (6a)

s.t. (λk) Πkzk = Πk zk−1, k ∈ N . (6b)

The structure of the mapping φ(·) is given by:

φ(zk,uk) :=
∑
j∈M

ϕ(zk,j+1, uk,j+1). (7)

The coefficient matrices Πk and Πk satisfy Πkzk = zk,0
and Πkzk−1 = zk−1,m. We also define the fixed dummy
vector z−1 satisfying Π0 z−1 = z−1,m = z̄.

The Lagrange function of P is given by

L(zk,uk, λk) :=
∑
k∈N

φ(zk,uk)− λT
k (Πkzk −Πkzk−1),

(8)

and its first-order optimality conditions are

0 = ∇zφk −Π
T

k λk +ΠT
k+1λk+1, k ∈ N− (9a)

0 = ∇zφn−1 −Π
T

n−1λn−1 (9b)

0 = ∇uφk, k ∈ N (9c)

0 = Πkzk −Πkzk−1, k ∈ N . (9d)

Here, ∇zφk := ∇zk
φ(·) and ∇uφk := ∇uk

φ(·). System
(9) is the discrete-time version of the EL conditions of
the lifted problem (2). Moreover, the dual variables λk

can be tied together to form discrete-time profiles of the
adjoint variables of the lifted problem. These properties
are discussed in the book of Biegler (2010).

We note that the block component of the EL conditions
corresponding to each stage k ∈ N− is given by,

0 = ∇zφk −Π
T

k λk +ΠT
k+1λk+1 = 0 (10a)

0 = ∇uφk (10b)

0 = Πkzk −Πkzk−1 (10c)

For fixed Πkzk−1 = zk−1,m and λk+1, (10) are the first-
order conditions of the primal stage problem:

min
zk,uk

φ(zk,uk) + (λk+1)
TΠk+1zk (11a)

s.t. (λk) Πkzk = Πk zk−1. (11b)

For the last stage k = n− 1 we have the block component
of the EL conditions:

0 = ∇zφn−1 −Π
T

n−1λn−1 = 0 (12a)

0 = ∇uφn−1 (12b)

0 = Πn−1zn−1 −Πn−1zn−2. (12c)

For fixed Πn−1zn−2 = zn−2,m these are the first-order
conditions of the primal stage problem,

min
zn−1,un−1

φ(zn−1,un−1) (13a)

s.t. (λn−1) Πn−1zn−1 = Πn−1 zn−2. (13b)

From the structure of (10) and (11) we can see that
coupling between neighboring stages k− 1, k, and k+1 is
introduced through the states zk−1,m and adjoints λk+1.

3. BLOCK GS SCHEMES

Our key observation is that we make is that we can solve
the EL conditions (9) of the long-horizon problem by using
block GS schemes. Assume that the adjoints λk are fixed
to λ�

k = 0 for all k ∈ N . At stage k = 0 and with fixed
z�−1 = z̄ we solve the short-horizon problem:

min
zk,j ,uk,j

∑
j∈M

ϕ(zk,j+1, uk,j+1) + δ(λ�
k+1)

T zk,m (14a)

s.t. (λk) zk,0 = z�k−1,m. (14b)

We refer to this problem as Pk and introduce the notation

(z�+1
k,m, λ�+1

k ) ← Pk(z
�
k−1,m, λ�

k+1) (15)

to indicate the inputs and outputs of problem Pk. The
primal-dual solution of Pk solves block k of the EL
conditions (10) for fixed initial state Πkzk−1 = z�k−1,m

and adjoint λk+1 = λ�
k+1. Note also that Pk is equivalent

to the stage problem (11).

From the solution of Pk we obtain the terminal state
z�+1
k,m and we use this as initial state for Pk+1 to compute

(z�+1
k+1,n, λ

�+1
k+1) ← Pk(z

�+1
k,m, λ�

k+2). We continue the recur-
sion until reaching the last stage, k = n− 1. At this stage
we solve problem Pn−1:

min
zn−1,j ,un−1,j

∑
j∈M

ϕ(zn−1,j+1, un−1,j+1) (16a)

s.t. (λn−1) zn−1,0 = z�n−2,m. (16b)

With this we compute (z�+1
n−1,m, λ�+1

n−1) ← Pn−1(z
�
n−2,m, 0).

The primal-dual solution of Pn−1 solves the optimality
system (12) for fixed initial state Πn−1zn−2 = z�n−2,m
obtained from the solution of Pn−2. Moreover, Pn−1 is
equivalent to (13).

After solving Pn−1 we have updated all the state (primal)

z�+1
k and adjoint λ�+1

k variables. In Figure 1 we can see
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