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Abstract: Current Optimization and Model Predictive Control practices for batch processes are 

implemented using two models, one for determining the optimal trajectories and another identified 

around those trajectories for control purposes. Here we use the recently developed Dynamic Response 

Surface Modeling methodology from which the optimal trajectories and the local linear or nonlinear 

state-space models for control purposes are obtained. Because concentration measurements at each batch 

run are very infrequent, this might be the most attractive way to obtain a dynamic model for control 

purposes.  
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1. INTRODUCTION 

Data-Driven Modelling of batch processes for process control 

purposes has attracted substantial interest from both academic 

and industrial researchers in the past decades. Several model 

structures representing the nonlinear dynamics of the batch 

processes have been proposed, including the Hammerstein-

Wiener (H-W) model and the Linear Parameter-Varying 

(LPV) model. The H-W models, consisting of two static 

nonlinear blocks in the inputs and outputs and a dynamic 

linear block in between (Bai 2002, van Wingerden, 

Verhaegen et al. 2009), have been applied for the modelling 

batch processes with linear kinetics and static nonlinear 

functions on the output, such as pH neutralization (Norquay, 

Palazoglu et al. 1999). The LPV model (Verdult and 

Verhaegen 2002) introduces scheduling parameters which 

vary with the evolution of the state variables in order to 

approximate bilinear dynamics. The aforementioned models 

are identified locally through Pseudo Random Binary Signal 

(PRBS) or Generalized Binary Noise (GBN) (Tulleken 1990) 

experiments in the vicinity of a pre-determined  trajectory, 

possibly an optimal one. However, when the available 

measurements in a single batch are infrequent, the estimation 

of such a linear or nonlinear dynamic model of satisfactory 

accuracy is not feasible.  

When the inner workings of the process are not known for a 

knowledge-driven model to be easily developed, the Design 

of Dynamic Experiments (DoDE) (Georgakis 2009) 

(Georgakis 2013) is a new and effective approach for data-

driven process modelling and optimization with time-varying 

inputs. As a generalization of the traditional Design of 

Experiments (DoE) (Box and Draper 2007, Montgomery 

2013), DoDE has been used to determine the optimal inputs 

for several batch processes (Troup and Georgakis 2013) 

(Fiordalis and Georgakis 2013) and has been experimentally 

verified (Makrydaki, Georgakis et al. 2010) on an industrial 

process. Usually the available data for estimating the 

corresponding Response Surface Methodology (RSM) model 

are collected at the end of the batch. If data are available also 

at fixed time intervals during the batch one can estimate a 

Dynamic RSM model (DRSM). This new type of model has 

been recently introduced in (Klebanov and Georgakis 2016) 

and will be briefly described and extensively used here. In 

contrast to the static RSM, the model parameters in DRSM 

are time-varying and do not require an excessive number of 

measurements during each batch. The DRSM model is used 

to calculate the optimal trajectory of a batch and will be also 

used here to estimate a dynamic model for control purposes 

in a receding horizon Model Predictive Controller (MPC). 

This saves the need for additional experimentation for the 

separate development of the model to be used by the MPC 

controller. Because the DRSM model captures both the linear 

and nonlinear dynamics of the process quite accurately, it can 

be used to develop either a linear or a nonlinear recursive 

dynamic model. Due to the limited length of this paper, we 

report here the control performances based on linear and 

nonlinear dynamic models and only the details on the 

estimation of the linear ones. The MPC controller here aims 

to achieve the desired concentration(s) at the end of the batch. 

An in silico illustration using an isothermal batch reactor 

with 3 reactions is presented.   

Firstly, a DRSM model is estimated representing the 

dynamics of the process over the entire design domain in 

which the DoDE experiments are performed. This model is 

used to optimize the process. Part of the optimization task is 

to determine the optimal duration of the batch, easily 

achieved through the DRSM without the need to do 

experiments of different duration, lessening the experimental 

burden. From the DSRM, we identify local linear and 

Hammerstein-Wiener models, via subspace identification 

(Verhaegen and Verdult 2007) by sampling the DRSM in the 
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vicinity of the optimal trajectory. To demonstrate that the 

proposed approach is more favourable when measurements 

are limited, we also identify local state-space models using 

PRBS experiments and compare the corresponding control 

performances. In all cases a Model Predictive Controller 

(MPC), utilizing a Kalman Filter (Kalman 1960), is used to 

control the desired concentration at the end of the batch.  

2. DEVELOPMENT OF DRSM MODEL 

The time-varying input profile in DoDE ( )u τ  is defined as 

( )0( ) ( ) ( )u u u wτ τ τ τ= + ∆ ×  (1) 

Here 
0 ( )u τ is a reference input profile of the dimensionless 

time 
bt tτ = , where 

bt  is the batch time. The function 

( )u τ∆  determines the size of the design domain within which 

the DoDE inputs are confined during experimentation. The 

function ( )w τ  is the dynamic factor, varying in the range [-1, 

+1]. We parameterize the time-varying dynamic factor ( )w τ  

by a finite linear combination of Shifted Legendre 

polynomials. The input profile using only the first three of 

them is given by. 

1 0 2 1 3 2( ) ( ) ( ) ( )w z P z P z Pτ τ τ τ= + +  (2)  

Here the coefficients, 
iz , are called dynamic sub-factors and 

( )iP τ  is the i th−  Shifted Legendre polynomial. The first 3 

such polynomials are: 

2

0 1 2( ) 1, ( ) 1 2 , ( ) 1 6 6P P Pτ τ τ τ τ τ= = − + = − +  (3) 

Other sets of orthogonal functions can be used as the 

functional basis, depending on the specific problem at hand. 

The set of experiments is designed by systematically varying 

the values of the dynamic sub-factors,
iz  in the normalized 

range of [-1,+1] and within the following constraining 

equations 
1 2 31 1z z z− ≤ ± ± ≤ + . In Figure 1, we plot the 

DoDE inputs designed for the batch process discussed later in 

section 4. The dotted lines are the reference input profile 

(middle) and the upper limit of the design domain. The solid 

lines are the designed set of input profiles to develop the 

DRSM. In these experiments, the functions 
0 ( )u τ and ( )u τ∆  

have a linear dependency on time. With the output data 

collected from the designed experiments, a quadratic DRSM 

with 3 factors in the following form is fitted: 

3 3 3 3
2

0

1 1 1

( ) ( ) ( ) ( ) ( )i i ij i j ii i

i j i j i

y z z z zτ β τ β τ β τ β τ
= = < =

= + + +∑ ∑∑ ∑ (4) 

where y  is the output. Here again we select the shifted 

Legendre polynomial as the basis for the parameterization of 

each function ( )β τ . If the first R  Shifted Legendre 

polynomials are used, the ( )qβ τ is given by 

, 1 0 , 2 1 , 1( ) ( ) ( ) ... ( )q q q q R RP P Pβ τ γ τ γ τ γ τ−= + + +   (5) 

With 0, , or ; for 1,2, ,  and  q i ij ii i n j i= = > . Function 

( )qβ τ  can be expressed as an inner product of two vectors, 

( ) ( )T

q qβ τ τ= γ p  where 0 1 1( [ ( ), ( ), ..., ( ) ]T

RP P Pτ τ τ τ−) =p is the 

column vector of the first R Shifted Legendre polynomials 

and ,0 ,1 , 1( , ,..., )T

q q q q Rγ γ γ −=γ  is the column vector 

consisting of the ' sγ  parameterizing ( )qβ τ . The estimation 

of the ' sγ  will be obtained by solving the following linear 

regression problem, eq (6), formulated in matrix form.   

 

We here list the variables, which define the dimensions of the 

vectors and matrices involved in eq (6). They include the 

n :  Number of dynamic Sub-factors  

p :  Number of parametric functions ( )qβ τ
 

R :  Number of polynomial parameterizing each ( )qβ τ
 

M :  Number of experiments 

K :   Number of measurements during each experiment  

There are two constraints on the above variables: M p>  and 

K R> . Here we arrange the measurements from the M  

experiments in the M*K matrix ( )1 2( , ( , ..., ( Kτ τ τ= ) ) )Y y y y  

where column vector 
1, 2, ,( ) ( , , ..., )T

k k k M ky y yτ =y  has the 

measurements made at time instances τk, (k=1, 2,…, K) 

across all M experiments. We now express the dependence 

of output, Y  on the inputs and the parameters as 

=Y ZΓP   (6) 

Matrix Γ  consists of the constants γ parameterizing the 

( )qβ τ  functions. Matrices Z  and P  defined below are of 

full rank. For the illustrative example of two dynamic sub-

factors, the matrices are given by: 
  

 

Figure 1: Input Profiles of Reactant B parameterized by 3 

Dynamic Sub-Factors 
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