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Abstract: State estimation techniques are used for improving the quality of measured signals
and for reconstructing unmeasured quantities. In chemical reaction systems, nonlinear estima-
tors are often used to improve the quality of estimated concentrations. These nonlinear esti-
mators, which include the extended Kalman filter, the receding-horizon nonlinear Kalman filter
and the moving-horizon estimator, use a state-space representation in terms of concentrations.
An alternative to the representation of chemical reaction systems in terms of concentrations
consists in representing these systems in terms of extents. This paper formulates the state
estimation problem in terms of extents, which allows imposing additional shape constraints
on the sign, monotonicity and concavity/convexity properties of extents. The addition of shape
constraints often leads to significantly improved state estimates. A simulated example illustrates
the formulation of the state estimation problem in terms of concentrations and extents, and the
use of shape constraints.
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1. INTRODUCTION

Many processes in the (bio-)chemical industry utilize
chemical reactions to convert feed materials into inter-
mediate or final products. The quality of these products
depends on the quality of the data used for monitoring,
control and optimization. Measurements made during the
course of a reaction are often limited in number and
usually corrupted with noise. The field of state estimation
focuses on both improving the accuracy of the measured
signals and reconstructing unmeasured signals by enforc-
ing their consistency with a given process model (Simon,
2006). For the static case, state estimation is referred to
as data reconciliation (Narasimhan and Jordache, 1999).

The models of chemical reaction systems are most often
derived from first principles and written as differential-
algebraic equations (DAE), with concentrations, temper-
atures, pressures and possibly other quantities as state
variables. These equations are nonlinear and highly cou-
pled, since each state variable is influenced by multiple
rate processes such as reactions, mass transfers, and flows.
An alternative representation of reaction systems in terms
of “vessel extents” has been proposed by Amrhein et al.
(2010) and reformulated by Rodrigues et al. (2015). Vessel
extents are to open reactors (reactors with inlet and outlet
streams) what batch extents are to batch reactors. In the
extent formulation, each state variable is influenced by a
single rate process, which considerably simplifies the anal-
ysis. In turn, the original states (concentrations) can be
represented as linear combinations of these vessel extents.

Several state estimators are available for nonlinear dy-
namic systems. Among these estimators, the most com-
monly used is probably the extended Kalman filter (EKF)
(Jazwinski, 1970). EKF is recursive by nature and thus can
easily be implemented in real time. The major drawback
of EKF lies in its inability to handle bounds and algebraic
constraints, which are common in the representation of
chemical reaction systems. The moving-horizon estimator
(MHE) constitutes an alternative that can handle con-
straints on the estimated states (Rao et al., 2001, 2003).
A constrained optimization problem is formulated at each
sampling time using a time window of past measurements.
This allows incorporating shape constraints (such as sign,
monotonicity and concavity/convexity) in the estimation
problem for the given window. The drawback of the MHE
method is the need to solve differential equations within
the optimization loop, which can become a computational
issue for real-time estimation.

The receding-horizon nonlinear Kalman filter (RNK) is an-
other nonlinear state estimator. It is based on the predic-
tion and update steps of the Kalman filter (Rengaswamy
et al., 2013). In the update step, an optimization problem
is solved using a time window of past measurements. The
RNK method differs from the MHE methods in the sense
that the optimization problem does not require solving
differential equations, which considerably reduces the com-
putational burden.

This paper formulates the state estimation problem in
terms of vessel extents, which allows exploiting additional
shape constraints associated with the extents. In certain
cases, the shapes are known a priori, while for other cases,
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a data-driven approach can be used to formulate appropri-
ate constraints. The objective of the paper is to compare
state estimation in the (original) concentration domain
with state estimation in terms of extents, in particular the
advantage that results from being able to use additional
shape constraints. Since the objective is not to compare
the performance of various nonlinear estimators, the RNK
method is chosen here for its computational simplicity.

This paper is organized as follows. Section 2 briefly reviews
the representation of chemical reaction systems in terms
of both numbers of moles and vessel extents. In Section
3, the shape properties of extents are discussed. Section 4
formulates the RNK in terms concentrations and extents.
In Section 5, the performance of these two estimator
formulations are compared via a case study, while Section
6 concludes the paper.

2. SYSTEM REPRESENTATION

In this section, chemical reaction systems are first modeled
in terms of numbers of moles and then in terms of extents.

2.1 Numbers of moles

Consider a homogeneous reaction system involving S
species, R independent reactions, p inlet streams, and one
outlet stream. A dynamic model in terms of the numbers
of moles can be written as

ṅ(t) = NTrv(t) +Winuin(t) − ω(t)n(t), n(0) = n0, (1)

where n is the S-dimensional vector of numbers of moles,
rv := V r with V the volume and r the R-dimensional
vector of reaction rates, uin is the p-dimensional vector
of inlet mass flowrates, ω := uout

m
is the inverse residence

time with the mass m and the outlet mass flowrate uout,
N is the R × S stoichiometric matrix, Win = M−1

w W̌in

is the S × p matrix of inlet compositions, with Mw the
S-dimensional diagonal matrix of molecular weights and
W̌in = [w̌1

in
· · · w̌p

in] with w̌
j
in the S-dimensional vector

of weight fractions of the jth inlet flow, and n0 is the
S-dimensional vector of initial conditions. Note that the
mass m can be computed from the numbers of moles
n as m(t) = 1T

S Mw n(t) or through integration of the
continuity equation upon knowledge of the inlet and outlet
streams: ṁ(t) = 1T

puin(t)− uout(t), m(0) = m0.

The concentrations are computed from the numbers of

moles as c(t) = n(t)
V (t) and the reaction rates r(t) are

typically nonlinear functions of c(t).

The S-dimensional representation given in Eq. (1) often
contains redundancies, as the system evolves in time only
due to the R independent reactions, the p independent
inlets and the outlet stream. Hence, for a reactor with
outlet, there exists q := S − (R+ p+ 1) invariants, which
are identically equal to zero, such that,

P+n(t) = 0q, (2)

where the S× q matrix P describes the q-dimensional null
space of the matrix [NT Win n0], and P+ is the pseudo-
inverse of P. The invariant relationships given in Eq. (2)
can be used to rewrite Eq. (1) in terms of d := R + p +

1 independent species. The dynamic model can then be
rewritten as:

ṅ1(t) = NT
1 rv(t) +Win,1uin(t) − ω(t)n1(t), n1(0) = n01 (3a)

n2(t) = −P2 P
+
1 n1(t), (3b)

where n1 is the d-dimensional vector of independent
species, n2 the q-dimensional vector of dependent species,
N1 is the R × d subset of the stoichiometric matrix,
Win,1 the d × p subset of inlet compositions, n01 the d-
dimensional vector of initial conditions, P2 is the q × q
subset of P corresponding to the dependent species and
P1 the d×q subset of P corresponding to the independent
species. Note that the set of independent species are chosen
such that rank of the matrix [NT

1 Win,1 n01] = d.

2.2 Vessel extents

The reaction system (3a) can be expressed in terms of ves-
sel extents by using the linear transformation (Rodrigues
et al., 2015) 1

x(t) = T1 n1(t) =
[

NT

1 Win,1 n01

]−1
n1(t). (4)

The transformed system reads:

ẋr(t) = rv(t) − ω(t)xr(t), xr(0) = 0R (5a)

ẋin(t) = uin(t) − ω(t)xin(t), xin(0) = 0p (5b)

ẋic(t) = −ω(t)xic(t), xic(0) = 1, (5c)

with the reconstruction equations:

n1(t) = NT

1 xr(t) +Win,1xin(t) + n01 xic(t) (6a)

n2(t) = NT

2 xr(t) +Win,2xin(t) + n02 xic(t). (6b)

The vessel extent of reaction xr,i(t) expresses the amount
of material produced or consumed by the ith reaction that
is still in the reactor at time t, the negative term on the
right-hand side accounting for what has left the reactor.
Similarly, the vessel extent of inlet expresses the amount
of material loaded by the jth inlet that is still in the
reactor at time t. Finally, xic(t) indicates the fraction of
the initial conditions that is still in the reactor at time t.
The various extents can be grouped in the extent vector
x := [xT

r
xT

in
xic]

T. Note that Eqs (6a) and (6b) can be
written together as:

n(t) = NT xr(t) +Winxin(t) + n0 xic(t). (7)

3. STATE CONSTRAINTS

Constraints on state estimates can be formulated based on
either the numbers of moles or the extents. Furthermore,
these constraints are either known a priori because they
are generally valid or they can be inferred from measured
data. Section 3.1 introduces constraints on the numbers
of moles and on the extents based on prior knowledge.
Section 3.2 introduces a procedure for estimating shape
constraints on the numbers of moles and on the extents
based on measurements.

1 The (S×S)-dimensional transformation matrix in Rodrigues et al.

(2015) reads T :=
[

NT Win n0 P
]−1

. Here T1 is a submatrix of
dimension d× d.
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