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Abstract: The concept of globally optimal controlled variable selection has recently been
proposed to improve self-optimizing control performance of traditional local approaches.
However, the associated measurement subset selection problem has not be studied. In this
paper, we consider the measurement subset selection problem for globally self-optimizing control
(gSOC) of Tennessee Eastman (TE) process. The TE process contains substantial measurements
and had been studied for SOC with controlled variables selected from individual measurements
through exhaustive search. This process has been revisited with improved performance recently
through a retrofit approach of gSOC. To extend the improvement further, the measurement
subset selection problem for gSOC is considered in this work and solved through a modification
of an existing partially bidirectional branch and bound (PB?) algorithm originally developed for
local SOC. The modified PB? algorithm efficiently identifies the best measurement candidates
among the full set which obtains the globally minimal economic loss. Dynamic simulations are
conducted to demonstrate the optimality of proposed results.
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1. INTRODUCTION

Since published in 1993, the well-known Tennessee East-
man (TE) process (Downs and Vogel, 1993) has been
extensively studied by researchers from the field of process
control. Various control strategies and algorithms were
proposed to address the control problems posed by Downs
and Vogel. McAvoy and Ye (1994) used the relative gain
array and other controllability analysis tools to configure
a basic PID control system, which operates the process
around the base case point and met basic requirements
posed in the problem. Later, Ricker (1995) identified the
optimal steady-state point of process operation, he also
presented a well-configured decentralized control struc-
ture (Ricker, 1996), which achieved excellent performances
for various control tasks. Meanwhile, nonlinear model
predictive control (NMPC) algorithm (Ricker and Lee,
1995) was also considered. Jockenhdvel et al. (2003) per-
formed dynamic optimization of the TE process using a
MATLAB-based OptControlCentre toolbox.

On the other hand, although there are many approaches
developed for either control or optimization of the TE
process, only a few were concerned with the economic per-
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formance by means of selecting controlled variables (CVs),
which are of critical importance for a control system.
The control system designed by Ricker (1996) controls
the active constraints identified from steady state opti-
mization, however, the sensitivity part is not appropriately
addressed. Another successful one is the work of Larsson
et al. (2001), where the self-optimizing control (SOC)
methodology (Skogestad, 2000) was applied to select the
best CVs to achieve economic improvements. The SOC is
a control strategy that by means of selecting particular
CVs, the economic performance of plant operation is au-
tomatically “self-optimizing” with an acceptable loss, in
spite of disturbances and uncertainties. Such a strategy is
particularly appealing for large scale process plants, such
as the TE process, where installing and maintaining an
extra computationally expensive “real-time optimization”
(RTO) layer is unnecessary for economically optimal op-
eration if a well-designed SOC system is implemented.

However, the self-optimizing control structure designed by
Larsson et al. (2001) has several limitations. Firstly, only
the individual measurements are considered as the CV
candidates. It has been well recognized that one achieves
better self-optimizing performance by controlling the mea-
surement combinations, because they provide more intrin-
sic knowledge of the process (Alstad and Skogestad, 2007;
Kariwala, 2007; Kariwala et al., 2008; Alstad et al., 2009;
Ye et al., 2013). However, an application of measurement
combination CVs to the TE process has not yet been
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Table 1. Manipulated variables for TE process

Number Variable name

XMV (1) D feed flow

XMV (2) E feed flow

XMV (3) A feed flow

XMV (4) A and C feed flow

XMV (5) Compressor recycle valve
XMV (6) Purge value

XMV (7) Separator liquid flow

XMV (8) Stripper liquid product flow
XMV (9) Stripper steam valve

XMV (10) Reactor cooling water flow
XMV (11) Condenser cooling water flow
XMV (12) Agitator speed

reported elsewhere. Moreover, to select out the CVs, the
full measurement set was screened largely according to
their heuristic judgements of the process characteristics.
Although easily understood from an engineer’s perspec-
tive, too much subjective judgements may omit promis-
ing CV candidates that cannot be obviously detected.
Since selecting a measurement subset to constitute CV
is a combination problem in nature, an exhaustive search
way is intractable with substantial measurements. In re-
cent years, a number of algorithms for fast identifying a
measurement subset were reported, e.g. the bidirectional
branch and bound (BAB) (Cao and Kariwala, 2008; Kari-
wala and Cao, 2009, 2010) and the mixed integer quadratic
programming algorithms (Yelchuru and Skogestad, 2012).

In this study, we consider the measurement subset selec-
tion problem for TE process in the framework of SOC.
Firstly, we investigate the TE process by applying a new
globally SOC (gSOC) method, which approximately min-
imizes the average loss for all operating conditions for a
plant operation (Ye et al., 2015). The new gSOC method
is developed in terms of “operating condition” instead of
some perturbed “disturbance variables”. This method al-
lows us to derive measurement combinations as CVs for the
TE process. Then, we investigate the measurement subset
selection problem with a modified partially bidirectional
branch and bound (PB?) algorithm, which was earlier
employed in local SOC methods based on local average loss
minimization. Finally, we implement the derived subsets
for gSOC of the TE process through a retrofit approach
proposed recently (Ye et al., 2016), dynamic simulations
are carried out to validate the optimality.

2. OVERVIEW OF THE PROCESS
2.1 Process description

The plant-wide TE process consists of the following 4
reactions

A(g) + C(g) + D(g) — G(lig)
A(g) + C(g) + E(g) — H(lig)
A(g) + E(g) — F(lig)

3D(g) — 2F(liq)

where A, C, D, F are the reactants, G and H are the
products and F' is the byproduct. Besides, there exists
an inert component B in the material circle, which is
contained in the feed and removed through purge to
maintain inventory balance. The process includes 5 major
operating units: the reactor, product condenser, vapor-
liquid separator, recycle compressor and product stripper.

Table 2. Measurements for TE process

Number Variable name

XMEAS(1) A feed

XMEAS(2) D feed

XMEAS(3) E feed

XMEAS(4) A and C feed

XMEAS(5) Recycle flow

XMEAS(6) Reactor feed rate

XMEAS(7) Reactor pressure

XMEAS(8) Reactor level

XMEAS(9) Reactor temperature
XMEAS(10) Purge rate

XMEAS(11) Product separator temperature
XMEAS(12) Product separator level
XMEAS(13) Product separator pressure
XMEAS(14) Product separator underflow
XMEAS(15) Stripper level

XMEAS(16) Stripper pressure

XMEAS(17) Stripper underflow
XMEAS(18) Stripper temperature
XMEAS(19) Stripper steam flow
XMEAS(20) Compressor work

XMEAS(21) Reactor cooling water outlet temperature
XMEAS(22) Separator cooling water outlet temperature

XMEAS(23-28)
XMEAS(29-36)
XMEAS(37-41)

mole fraction of A-F in feed
mole fraction of A—H in purge
mole fraction of D—H in product

The process includes 12 manipulated variables (MVs) and
41 measurements, as listed in Table 1 and Table 2. For
the MVs, they have all been scaled within the 0-100%
range, which are considered as valve positions. For the
measurements, they are defined with different sampling
frequencies and dead time to keep consistence with the
industrial practice. An economic index is also introduced,
which is composed of the cost/loss of raw materials and
energy, see Downs and Vogel (1993) for more details.

2.2 Qwverview of control structure

In open literature, there have been many control structures
developed for the TE process. However, in the remainder
of this paper, we will mainly introduce two control systems
proposed by Ricker (1996) and Larsson et al. (2001) to get
an overview for controlling the TE process. (For the sake
of convenience, they will be denoted as “CS_Ricker” and
“CS_Skoge” after the corresponding authors respectively.
Furthermore, the choice of CV selection is of particular
interest in this study and outlined as below.

According to their control policies, the following process
variables should be controlled in closed-loops:

(1) Separator level and stripper level. These two liquid
levels are integrating variables and have no steady
state effects, they must be stabilized in the first place.

(2) Production rate (stripper underflow) and product
quality (mole %G in product). Manufacturing objec-
tive defines their targets under different operating
modes and specifications, these equality constraints
should be controlled to satisfy the targets.

(3) At the optimum, there are 5 active constraints
that needs to be controlled at their boundaries:
reactor pressure (maximum) and level (minimum),
compressor recycle valve (closed), stripper steam
valve (closed) and agitator speed (maximum). Ricker
(1996) provided detailed physical interpretations why
these constraints are active at the optimum.

Above control requirements consume 9 degrees of free-
dom (DOF) for plant operation. For the remaining un-
constrained 3 DOF, Ricker (1996) chose to control the
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