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Abstract: The theory of risk provides a systematic approach to handling uncertainty with
well-defined risk and deviation measures. As the model-based economic optimization of the
water-flooding process in oil reservoirs suffers from high levels of uncertainty, the concepts from
the theory of risk are highly relevant. In this paper, the main focus is to offer an asymmetric
risk management, i.e., to maximize the lower tail (worst cases) of the economic objective
function distribution without heavily compromising the upper tail (best cases). Worst-case
robust optimization and Conditional Value-at-Risk (CVaR) risk measures are considered with
geological uncertainty to improve the worst case(s). Furthermore, a deviation measure, semi-
variance, is also used with both geological and economic uncertainty to maximize the lower tail.
The geological uncertainty is characterized by an ensemble of geological model realizations and
the economic uncertainty is defined by an ensemble of varying oil price scenarios.
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1. INTRODUCTION

Risk is a broad concept covering different social and human
sciences, e.g., ethics, psychology, medicine, economics etc.
As a general definition, risk is an unexpected result or the
probability of a failure. Theory of risk helps in modeling
(or defining) risk, measuring it, and also provides tools
to minimize or manage it, see e.g., Artzner et al. (1999),
Krokhmal et al. (2011). From a financial viewpoint, risk
can be defined as the unpredicted variability or a poten-
tial loss of the expected economic objective. Markowitz
Markowitz (1952) in the early 50’s has proposed a ’risk-
return’ portfolio selection approach, where the risk is char-
acterized as the variance of the individual assets.

In the oil reservoir water-flooding optimization, a financial
objective, e.g., Net Present Value (NPV) is maximized,
see e.g., Brouwer and Jansen (2004), Foss (2012) and
Van den Hof et al. (2012). Due to the limited knowledge of
the reservoir model parameters and the varying economic
conditions, this model-based economic optimization suffers
from high levels of uncertainty. As risk management plays
an important role in decision making under uncertainty
(Rockafellar (2007)), water-flooding optimization becomes
a natural candidate to use concepts from the theory of risk.
In the petroleum engineering literature, decision making
under uncertainty has been discussed from various per-
spectives. In Van Essen et al. (2009), a so-called robust
optimization approach has been introduced, which max-
imizes an average NPV over an ensemble of geological
model realizations. In Capolei et al. (2015b), a symmet-
ric mean-variance optimization approach has been imple-
mented honoring geological uncertainty. In Siraj et al.
(2015a), these approaches have been extended to consider

the economic uncertainty characterized by varying oil price
scenarios. Similar strategies have been described in Yeten
et al. (2003), Bailey et al. (2005) and Yasari et al. (2013).
One of the main limitations of the mean-variance opti-
mization approach is the symmetric nature of the variance
which also penalizes the best cases, while generally, in
a maximization problem, the decision maker is mainly
concerned with the lower tail of the objective function
distribution. In Xin and Albert (2015), a multi-objective
optimization has been implemented that maximize the
average of the objective function and the worst case with
respect to the geological uncertainty. As an early work of
using the theory of risk in water-flooding optimization,
different risk measures with their pros and cons have been
reviewed in Capolei et al. (2015a) and their suitability
for the production optimization is studied. In Siraj et al.
(2015b), asymmetric risk measures have been studied and
implemented with economic uncertainty.

The main contribution of this work is to address the ques-
tion of how the well-defined risk and deviation measures
in the theory of risk can be beneficial in providing an
asymmetric risk management of the objective function,
i.e., NPV distribution? Both geological and economic un-
certainties are considered. The asymmetric risk measures
such as the worst-case max-min approach (Bertsimas et al.
(2011)) and the Conditional Value-at-Risk (CVaR) (Rock-
afellar and Uryasev (2000)) are implemented with geolog-
ical uncertainty characterized by an ensemble of reser-
voir models. The worst-case approach, that maximizes
the worst-case in a given uncertainty set, and the CVaR,
defined as the average of some percentage of the worst-case
scenarios, allow for an asymmetric shaping of the objective
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function distribution. The asymmetric deviation measure,
semi-variance, originally proposed in Markowitz (1952),
provides a measure for the return being below the ex-
pected return. It is also considered and implemented with
both geological and economic uncertainties. The economic
uncertainty is characterized by an ensemble of varying oil
prices.

The paper is organized as follows: In the next section,
uncertainty in model-based economic optimization of the
water-flooding process is explained. In Section 3, the
worst-case optimization approach is presented with a sim-
ulation example. CVaR optimization with a simulation
example under geological uncertainty is presented in Sec-
tion 4. Section 5 discusses the Semi-variance approach
in detail with a simulation example with both geological
and economic uncertainty. Finally the conclusions of the
presented results are given in Section 6.

2. UNCERTAINTY IN WATER-FLOODING
OPTIMIZATION

Water-flooding involves the injection of water in an oil
reservoir to increase oil production. NPV, as an objec-
tive for the dynamic optimization of the water-flooding
process, can be mathematically represented in the usual
fashion as:

K
ro. o e Qe s
J = Z o Qo,k w qw,ki inj * Qing,k . Atk (1)
k=1 (1+0b)7
where 7,7, and 7;,; are the oil price, the water produc-

tion cost and the water injection cost in % respectively. K

represents the production life-cycle i.e., the total number
of time steps k and Aty the time interval of time step
k in days. The term b is the discount rate for a certain
reference time 7;. The terms ¢o k., ¢uw,k and gnj k represent
the total flow rate of produced oil, produced water and

injected water at time step k in %.

The limited information contents in seismic, well logs
and production data about the true reservoir parame-
ters result in highly uncertain reservoir models. Similarly,
the NPV objective function contains economic variables
such as interest rate, oil price, etc., which fluctuate with
time and can not be precisely predicted. The first step
in handling uncertainty is the modeling (quantification)
of the uncertainty space ©. A general practice of quan-
tifying uncertainty in the water-flooding optimization is
by considering an ensemble of uncertain parameters, see
e.g., Van Essen et al. (2009), Capolei et al. (2015b). It
is equivalent to descretizing the uncertainty space, i.e.,
On,., = {01,02,--- ,0n,.,}, where 0; is a realization of
uncertain parameter in an ensemble of Ny, members.

Water-flooding optimization is a highly complex large-
scale non-linear optimization problem. In this work, a
gradient-based optimization approach is used where the
gradients are obtained by solving a system of adjoint
equations, see e.g., Jansen (2011). An optimization solver
KNITRO (Byrd et al. (2006)) is then used with an interior
point method to iteratively converge to a (possibly local)
optimum.

In the next sections, various risk/deviation measures,
i.e., worst-case, CVaR and semi-variance are discussed in
details with simulation examples.

3. WORST-CASE ROBUST OPTIMIZATION

Worst-case robust optimization (WCO) assumes that the
uncertainty is known only within certain bounds, i.e.,
uncertainty set ©, and the solution is robust for any
realization of the uncertainty in the given set. Hence it
focuses only on the worst-case in © and solves a max-
min (or min-max) problem. The worst-case or a max-min
optimization objective can be written as:

max néin Ji(u,0;) (2)

where u is control input and ¢; € Oy, is the uncertain
parameter. It can easily be seen that the above optimiza-
tion problem is non-differentiable, so a common approach
to reformulate the above maz-min problem is by adding
a slack variable z with additional constraints as follows:
(Ben-Tal et al. (2009))

max z

u,z (3)

st z< Ji(u,0;) Vi

Therefore, for a total number of ensemble members N,
there will be Ny, additional constraints. As the worst-case
optimization only focuses on the lowest value of the NPV
distribution, it provides an asymmetric risk management.
The main limitation of the worst-case approach is that it
provides a very conservative solution. In the next subsec-
tion, the simulation example for the worst-case approach
(3) implemented with geological uncertainty is presented.

8.1 Simulation example under geological uncertainty

Simulation tools:  All the simulation experiments in this
work are performed using MATLAB Reservoir Simulation
Toolbox (MRST) (Lie et al. (2012)) while KNITRO (Byrd
et al. (2006)) is used for subsequent optimization.

Reservoir models: ~ We use an ensemble of Nyo, = 100
geological realizations of the Standard egg model, see
Jansen et al. (2014). Each model is a three-dimensional
realization of a channelized reservoir produced under water
flooding conditions with eight water injectors and four
producers based on the original Egg model proposed
in Van Essen et al. (2009). The true permeability field
is considered to be the only unknown parameter and
the number of 100 realizations is assumed to be large
enough to be a good representation of this parametric
uncertainty space. The life-cycle of each reservoir model
is 3600 days. The absolute-permeability field of the first
realization in the set is shown in Fig. 1. Fig. 2 shows the
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Fig. 1. Permeability field of realization 01 of a set of 100
realizations

permeability fields of six randomly chosen realizations of
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