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1. INTRODUCTION

Model Predictive Control (MPC) is a control methodology
that uses a model of the system to be controlled to predict
its output over a future horizon. At each time instance a
control sequence is calculated online as the solution to an
open-loop control problem based on the model, the current
state and specified reference trajectory. Only the first
element of the control sequence is applied to the system
and feedback is obtained by repeating this procedure when
the next measurements are received. A notable advantage
of MPC is the way constraints are handled directly when
solving the optimization problem resulting in the control
sequence. The performance of the controller thus hinges on
the quality of the system model, but not only on that. Also
noise and possible disturbances must be catered for, see
Pannocchia and Rawlings (2003), Gopaluni et al. (2004),
Gevers (2005), Shah and Engell (2010), Huusom et al.
(2012) and references therein. One should therefore con-
sider a system model comprising a deterministic as well as
a stochastic or noise part. Selecting a noise model involves
a trade-off between conflicting requirements namely those
of low variance set-point tracking, disturbance rejection
and fast response to unmeasured disturbances.

Boiroux et al. (2015) provided a comparative study of
the effects of choosing different deterministic model parts
in MPC-based Artificial Pancreas technology keeping the
stochastic part fixed. The goal of the present paper is to
study the role played by the stochastic part of the model.
This term is intended to absorb not only the presence of
unmeasured disturbances but also more generally unmod-
elled system dynamics. The ultimate test of the suitability
of a given noise model is therefore whether the system
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performs adequately in closed-loop (CL). The message of
this paper is that closed-loop performance may benefit
from selecting a suitable low-order noise model.

CL performance is evaluated for model structures corre-
sponding to different filter orders. For each model struc-
ture the noise term is identified using the Maximum Like-
lihood (ML) criterion from measurements collected before
closing the loop, see Jørgensen and Jørgensen (2007b).
An efficient MPC implementation is developed based on
continuous-time transfer functions keeping the determin-
istic and stochastic model parts separate. The stochastic
part will determine the Kalman Filter and Predictor while
the deterministic model part, set-point and filtered state
estimates will determine the optimal control problem to
be solved.

The paper is structured as follows. Section 2 recalls the
basic theory of realization and discretization of linear
time-invariant (LTI) systems given in terms of transfer
functions. The following section continues by focusing on
the case of LTI systems with continuous-time white noise
input. Section 4 develops the Kalman Filter and Predictor
for the resulting discrete-time state space model and is
followed by a section developing the Model Predictive
Controller. We round off with a section discussing the
outcome of a concrete closed-loop control simulation for
noise models of different orders.

2. REALIZATION OF LINEAR SYSTEMS

We consider a linear system described in continuous time
in terms of transfer functions G(s) and H(s) and with
discrete measurements y(tk) at times t = tk :

Z(s) = G(s)U(s) +H(s)W (s)

y(tk) = z(tk) + vk, k = 0, 1, 2, ...
(1)
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Here, U denotes the input to the deterministic part of
the model and W the white noise input to the stochastic
part of the model. We shall assume that G and H are
strictly proper. Finally, {vk} ∼ Niid(0, r

2) is a sequence of
independent and identically distributed Gaussian random
variables representing the measurement noise. With a view
to using (1) as a model of a system to be subjected
to Model Predictive Control we now turn to realizing
it as a discrete-time state-space model. In doing so we
consider the deterministic and stochastic parts separately
and assume that the Zero-Order-Hold (ZOH) condition
applies to the deterministic part. The stochastic part on
the other hand involves sampling a certain Stochastic
Differential Equation (SDE). We deal with this in section
3. We rely on the following lemma:

Lemma 1. Let a continuous-time system S be described
by Z(s) = G(s)U(s) where G(s) is assumed to be a proper
transfer function. When S is subjetcted to ZOH-input then
there exist matrices A, B, C and D such that the state
space model

xk+1 = Axk +Buk

zk = Cxk +Duk
(2)

provides a realization of S in discrete-time, when equidis-
tantly sampled. If G(s) is strictly proper we have that
D = 0.

The deterministic part of the system description

Zd(s) = G(s)U(s) (3)

may be realized as a state space model by

Zd(s) ∼
{
xd
k+1 = Adx

d
k +Bduk

zdk = Cdx
d
k

(4)

and the stochastic part

Zs(s) = H(s)W (s) (5)

as

Zs(s) ∼
{
xs
k+1 = Asx

s
k +Bswk

zsk = Csx
s
k

(6)

Using that

Z(s) = Zd(s) + Zs(s) (7)

we find that there exist matrices A,B,C,G expressible in
terms of the system matrices of (4) and (6) such that

xk+1 = Axk +Buk +Gwk

zk = Cxk

yk = zk + vk

(8)

provides a state space realization of (1) with an added
equation accounting for measurement noise vk. In fact (8)
results by taking

xk =

[
xd
k

xs
k

]
A =

[
Ad 0
0 As

]
B =

[
Bd

0

]

G =

[
0
Bs

]
C = [Cd Cs]

The process noise, {wk} , and the measurement noise, {vk}
are assumed to be sequences of Gaussian random variables
with the joint distribution of (wk, vk) given by[

wk

vk

]
∼ Niid

([
0
0

]
,

[
Q 0
0 R

])
(9)

3. REALIZATION OF STOCHASTIC TRANSFER
FUNCTIONS

We now consider a continuous-time LTI system with
transfer function H(s) subjected to continuous-time white
noise input given in the Laplace domain by W (s):

Z(s) = H(s)W (s) (10)

Assuming equidistant sampling with sampling time Ts

the transfer function and the associated measurement
equation may be realized in the form of an SDE in the
sense of Ito

dx(t) = Ac
sx(t)dt+Bc

sdω(t) (11a)

y(tk) = Cc
sx(tk) + v(tk) (11b)

where ω denotes standard Brownian Motion and

x(t0) ∼ N(x̄0, P0) (12a)

dω(t) ∼ Niid(0, Idt) (12b)

v(tk) ∼ Niid(0, R) (12c)

with R = r2.

We now discretize assuming equidistant sampling at inte-
ger multiples of Ts and obtain a discrete-time state space
model (6) by taking

As = eA
c
sTs Bs = I Cs = Cc

s (13)

and
wk ∼ Niid(0, Q) (14)

with

Q =

∫ Ts

0

eA
c
sσBc

s(B
c
s)

′
e(A

c
s)

′
σdσ (15)

The reader is referred to Åström (1970) for a proof of
these discretization results. Since (Ac

s, B
c
s) is controllable

it follows from Zhou et al. (1995) thatQ is positive definite.
According to Van Loan (1978)

Q = Φ
′

22Φ12 (16)

where

exp

([
−Ac

s Bc
s (B

c
s)

′

0 (Ac
s)

′

]
Ts

)
=

[
Φ11 Φ12

0 Φ22

]
(17)

The formula (17) may be employed to calculate As and
Q numerically by means of Padé approximation, but it is
in fact possible to calculate exact analytical expressions
for those matrices in the case of the simple transfer
functions we consider here. The expressions, however,
quickly become rather unwieldy with increasing order. We
introduce the notation

β =
Ts

τ
(18)

and list values of As and Q in Table 1 for examples of
the kind of transfer functions considered in this paper. We
note that with H(s) = k

(τs+1)n the continuous-time noise

output power for white noise input derived from standard
Brownian Motion becomes

1

2π

∫ +∞

−∞

k2

(1 + (τω)2)n
dω =

1

2π

k2

τ
In (19)

where In =
∫ +∞
−∞

1
(1+t2)n dt satisfies I1 = π and the

recursion In+1 = 2n−1
2n In holds for n ≥ 1. For fixed filter

order n the continuous-time noise output power depends

only on the ratio k2

τ but the distribution of this power
over the spectrum is depends on τ , spreading out more as
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