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Abstract: Theoretical results and simulations support the idea that deterministic models
provide an acceptable description only for large numbers of molecules. In the context of GRN,
which usually involve a small number of molecules, such arguments might lead to disregard
deterministic models as unsuitable representations.

We found, however, strong evidences that justify their use to model self-regulatory genetic
circuits, even for small number of molecules. In fact, we show that under some conditions, a
stochastic system showing a switching-like behaviour (manifested on a bimodal distribution)
nearly coincides with a deterministic counterpart exhibiting bistability. Moreover, and contrary
to what it might be expected, we find situations involving large numbers of molecules where the
deterministic model results into a poor approximation. The analysis and methods presented are
expected to help selecting the most adequate system’s representation.
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1. INTRODUCTION

Essentially, gene regulatory networks (GRN) (considered
as the software-hardware architecture of the cell) execute
the program written in the genome to adapt the phys-
iological state of the cell in response to environmental
signals. Such networks usually comprise a large num-
ber of biochemical reactions which can be conceptually
described as the assembly of simple biochemical struc-
tures, conceived as efficient abstractions of the central
(transcription-translation) dogma (Sherman and Cohen,
2014). Regulatory functions produced by negative or pos-
itive feedback are among the most common mechanisms
(Paulsson and Ehrenberg, 2000; Friedman et al., 2006;
Shahrezaei and Swain, 2008; Sherman and Cohen, 2014).

The underlying biochemical machinery typically involves
a few number of molecules, what makes its behavior inher-
ently stochastic. In describing GRN dynamics, a number
of microscopic (stochastic) and deterministic modelling
approximations has been attempted with mixed results
(Kepler and Elston, 2001; Gillespie, 2007; Rosenfeld et al.,
2002; Mackey et al., 2011). Microscopic descriptions re-
volve around the chemical master equation (CME), with
different approximations such as moment methods (Eng-
blom, 2006), finite state projection (Munsky and Kham-
mash, 2006), hybrid models (Jahnke, 2011), or direct
stochastic simulation algorithms (SSA) (Gillespie, 2007),
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oriented to reduce complexity. Deterministic models, on
the other hand, are based on classical biochemical kinet-
ics and can be formally represented by sets of ordinary
differential equations (ODE). They have been used over
the past recent years to get qualitative insights on GRN
dynamics Mackey et al. (2011).

Theoretical results and simulations (Van Kampen, 2007;
Gillespie, 2009; Wallace et al., 2012) support the idea that
deterministic models provide an acceptable description of
systems with large numbers of molecules, whereas the
quality of the approximation deteriorates as that number
reduces (Shmulevich and Aitchison, 2009). In the context
of GRN, which usually involve small number of molecules,
such arguments might lead to disregard deterministic
models as unsuitable representations.

However, for a general class of self-regulatory genetic
circuits we found out strong evidences that justify their
use even under a small number of molecules condition. The
class comprises those GRN where proteins are produced in
bursts (e.g. Shahrezaei and Swain, 2008; Dar et al., 2012),
what seems to be often the case, both in prokaryotic and
eukaryotic cell types (Dar et al., 2012).

We show that under some conditions, a stochastic system
showing a switching-like behaviour (manifested on a bi-
modal distribution) nearly coincides with a deterministic
counterpart exhibiting bistability, what confirms the va-
lidity of the deterministic approximation for small number
of molecules. Note however that bimodality and bistability
are not completely interchangeable, as one can find many
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other instances in which the bimodal/binary stationary
distribution associated to the stochastic system does cor-
respond with a monostable deterministic counterpart.

In order to identify parameter regions, where determin-
istic approximations capture the essential features of the
stochastic dynamics (average protein levels or coexistence
of multiple stationary states), we adapt the method de-
velop in Péjaro et al. (2015) to cope with bistability. We
show that the quality of the deterministic approximation
is at a large extent conditioned by the average number
of bursts, and it improves as the value of this parameter
increases. On the other hand, and contrary to what it
might be expected, we find situations involving a high
number of molecules where the deterministic model results
into a poor approximation.

Hopefully, the analysis and methods presented can be
of help for selecting the most adequate representation
of system dynamics or to decide which one is preferable
depending on the network structure and parameters.

The article is structured as follows: In Section 2, we de-
scribe the gene regulatory system and its stochastic rep-
resentation together with the deterministic (ODE based)
approximation. A method to characterise the regions in the
parameter space that sustain bimodal or binary response
and bistable behaviour is presented in Section 3. Main
results are discussed in Section 4. We end up with some
conclusions and future work.

2. THE SYSTEM AND ITS REPRESENTATION

The genetic system under study consists of a transcription-
translation network involving a single gene that expresses
a protein X which regulates its own production. The
representative biochemical steps, including protein and
mRN A degradation, are depicted in Fig. 1.

Asreported in Huang et al. (2015), RNA transcription may
occur also at the inactive promoter state, a phenomenon
that is known as transcriptional leakage. We assume that
the basal transcription level from the inactive promoter
takes place at a rate constant k. lower than k1, (Friedman
et al., 2006; Ochab-Marcinek and Tabaka, 2015).

Typically, self-regulation is described by a function of the
form (Friedman et al., 2006; Ochab-Marcinek and Tabaka,
2015):

o(x) = [1 - p@)] + p(x)e, (1)

with z representing protein level, ¢ = Z—i € (0, 1) the
transcriptional leakage constant and p(z), a Hill-type
function (Alon, 2007) that relates x to the fraction of
DNA,yy:
H
p(l‘) - :CH +KH. (2)
where K = %ﬁt is an equilibrium constant, and H a
parameter proportional to the number of protein molecules
bonded to the promoter. Its values can be positive or
negative depending on whether the circuit represses or
promotes protein production, thus resulting into a negative
or positive feedback, respectively.
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Fig. 1. Schematic representation of the transcription-
translation mechanism under study. The promoter as-
sociated with the gene of interest is assumed to switch
between active (DNA,,) and inactive (DN Aqg)
states, with rate constants ko, and kog per unit time,
respectively. In this study, the transition is assumed
to be controlled by a feedback mechanism induced by
the binding/unbinding of a given number of X-protein
molecules, what makes the network self-regulated.
Transcription of messenger RNA (mRNA) from the
active DN A form, and translation into protein X are
assumed to occur at rates (per unit time) k; and ko,
respectively. k. is the rate constant associated with
transcriptional leakage. Both mRN A and X-protein
degradation are assumed to occur by first order pro-
cesses with rate constants y; and 79, respectively.

2.1 The microscopic description

In the following we will consider gene regulatory networks
where the rate of mRN A degradation is much faster than
the corresponding to protein so that 77 /72 > 1. Under
such condition, protein will be produced in bursts (e.g.
Shahrezaei and Swain, 2008; Dar et al., 2012), what sup-
ports a description of the protein probability distribution
based on the following partial integro-differential equation
firstly proposed by Friedman et al. (2006):
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where 7 = 7t represents a dimensionless time associated
with the time scale of protein degradation, and a = ki /72
is the dimensionless rate constant for transcription that re-
lates to the mean number of bursts produced per cell cycle
(e.g. burst frequency). The first term in the right-hand side
of the equation accounts for protein degradation, whereas
the integral describes protein production in bursts. Since
burst size is assumed to follow an exponential distribution
(Elgart et al., 2011), the conditional probability for protein
level to jump from a state 2’ to z after a burst can be
expressed as:

w(z —a') = (1/b)exp((a’ — 2)/b) —0(x —a)  (4)

where parameter b = ko/v1, is a dimensionless rate
constant associated with translation which corresponds
with the mean number of proteins produced per burst (i.e.
burst size). Finally, the feedback mechanism is modelled
by incorporating into the integral term the function ¢
previously defined in (1).
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