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Abstract: We propose a new fault identification method, which can describe the contribution
of each process variable to a detected fault and identify a faulty variable more accurately than
conventional methods. In the proposed method, in addition to a fault detection model that
describes normal operating condition (NOC), multiple fault identification models that describe
the same NOC are also constructed by eliminating one variable from all monitored variables at
a time. After a fault is detected with the fault detection model, the fault detection index, e.g. a
combined index of the T2 and Q statistics, is calculated by using each of the fault identification
models. When the faulty variable is eliminated, the index does not change before and after the
fault occurs. On the other hand, when the normal variable is eliminated, the index is affected
by the fault and increases after the fault occurs. Thus, the eliminated variable corresponding
to the index that does not increase after the occurrence of the fault is identified as a faulty
variable. In the proposed method, the ratio of the average index in NOC to the current index
is used as a fault identification index or a contribution. To validate the proposed method, VEC
was compared with the reconstruction-based contribution (RBC) through numerical examples.
The results have demonstrated that VEC outperformed RBC in fault identification performance
both in the linear case and in the nonlinear case.

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Fault identification, fault diagnosis, multivariate statistical process control (MSPC),
process monitoring, contribution plot, kernel principal component analysis, nonlinear systems.

1. INTRODUCTION Once a fault is detected, diagnosing the root cause is

crucial for taking an appropriate action to recover process

To safely operate processes and consistently produce high- ~ condition. PCA-based methods for fault identification or

quality products, process monitoring is crucial in any
industry. Because of the practicability, data-driven ap-
proaches have been widely investigated and used for fault
detection, identification, and diagnosis. In particular, mul-
tivariate statistical process control (MSPC), which was
proposed by Jackson and Mudholkar (1979), has been
successfully applied to various industrial processes as a
dominant tool of statistical process monitoring (Kresta
et al., 1991; Nomikos and MacGregor, 1995; Kano and
Nakagawa, 2008; Qin, 2012). In MSPC, principal com-
ponent analysis (PCA) is applied to normal operation
data to construct a PCA model that describes correlation
among variables when process is operated in normal op-
erating condition (NOC), and measurement samples are
projected onto a principal component subspace (PCS)
that represents variable correlation in NOC and a residual
subspace (RS) that contains abnormality or noise. Then,
two statistics are calculated as fault detection indices: T
and squared prediction error (SPE). The T? statistic is
the mahalanobis distance from the origin to the sample
projected onto the PCS, and the SPE, or @ statistic, is
the distance to the sample projected onto the RS. The
process is judged to deviate from NOC, that is, a fault is
detected, when either T2 or SPE exceeds the control limit.
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diagnosis have been developed. A contribution plot is a
conventional method and has been widely used (Mac-
Gregor et al., 1994; Nomikos, 1996; Westerhuis et al.,
2000). This method examines the contribution of each
process variable to T2 or SPE and identifies the variable
corresponding to the largest contribution as the variable
related to the root cause. However, Alcala and Qin (2009)
pointed out that the faulty variable does not always have
the largest contribution, and they proposed the alternative
method using reconstruction-based contribution (RBC).
In this method, after a fault is detected, the faulty sample
is reconstructed by sliding the sample vector along each
variable direction at a time so that the fault detection
index is minimized, then the variable direction correspond-
ing to the minimum index is identified as a faulty direction.
The result of a numerical example showed that the diag-
nosability of this RBC method was higher than that of the
conventional contribution plot.

The RBC method was extended to cope with nonlin-
ear processes using kernel principal component analy-
sis (KPCA), which can extract a nonlinear relationship
among input variables by mapping the measurements from
the original space to the feature space where linear PCA is
performed (Alcala and Qin, 2010). KPCA has been used
as a nonlinear process monitoring tool (Lee et al., 2004;
Choi et al., 2005). In KPCA-based process monitoring,
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fault detection indices are defined in a similar way as PCA-
based process monitoring, but the contribution is not used
because the mapping function is not explicitly described.
In the RBC method, the fault detection indices based on
KPCA before and after reconstruction of each variable are
used for the nonlinear fault identification.

However, as demonstrated through a case study in the
fallowing section, the contribution of a normal variable
may be estimated large, comparable with that of a faulty
variable. In such a situation, the result of the RBC method
can be misleading.

To overcome such weakness of the RBC methods, in the
present work, we propose a new fault identification method
which can accurately describe the contribution of each
process variable to a detected fault and clearly identify
a faulty variable. In addition to a fault detection model
that describes normal operating condition (NOC), the
proposed method constructs multiple fault identification
models that describe the same NOC by eliminating one
variable (or multiple variables if necessary) from all moni-
tored variables at a time. After a fault is detected with the
fault detection model, the fault detection index for a faulty
sample is calculated by using each of the fault identifica-
tion models and is compared to the corresponding fault
detection index in NOC. The index calculated by elimi-
nating the normal variable increases after a fault occurs,
since it is still affected by the fault. On the other hand, the
index calculated by eliminating the faulty variable does not
change from that in NOC. Hence, the eliminated variable
corresponding to the index that is kept small in faulty
operating condition is identified as a faulty variable. In
this work, the ratio of the average index in NOC to the
index after a fault occurs is used for fault identification as a
contribution of each variable. The proposed contribution
is referred to as variable elimination-based contribution
(VEC). The VEC-based fault identification method can
be used with any modeling method or index. In addition,
it is more intuitive and simple than the RBC method.
To validate the proposed VEC method, it is compared
with the RBC method in fault identification performance
through several numerical examples.

2. RECONSTRUCTION-BASED CONTRIBUTION
(RBC)

2.1 RBC with PCA

The RBC method is based on the idea of fault identi-
fication wvia reconstruction (Dunia and Qin, 1998). This
method reconstructs a faulty sample by sliding it along
each variable direction so that the SPE index is minimized,
then it identifies the variable direction corresponding to
the minimum index as a faulty direction.

In MSPC based on PCA, two fault detection indices
are defined on the basis of the PCA model constructed
from normal operation data. One is SPE, which detects
abnormality that cannot be described by the PCA model
representing NOC. For a new sample * € R™ that has
measurements of M variables, SPE is defined as

SPE = ||(Ip; — PPT)z|?

=x'(Iy — PP )x
=2TCx (1)
where Iy € RM*M ig an identity matrix, P € RM*E g
the PCA loading matrix, and C € RM*M represents the

projection matrix to the RS. The other index is T2, which
is described as

T*=t"s"t
=z"PE'PTx
=xz"Dx (2)
where t € R is the score vector for the new sample z and
> € REXE ig a diagonal matrix that contains variances of
principal components. Here, R is the number of principal
components retained in the PCA model. The T2 index
shows whether or not the process operating condition is
included in the range of NOC. The combined index of SPE
and 72 has been developed since it is preferred to monitor
a single index rather than two indices simultaneously
(Raich and Cinar, 1996). The combined index proposed
by Yue and Qin (2001) is described as
SPE T2 (é D

b=t = 52+>w=wT<I>w 3)

T T2

where 62 and 72 are control limits for SPE and T2, and
they are determined under the assumption that monitored
variables follow a multivariate normal distribution.

A faulty sample x; € RM is reconstructed by sliding z
along a variable direction as follows:

Zm =L — fmgm (4)
where £, € RM is the mth natural basis and describes
the direction of the mth variable, and f,, is the magnitude
of the fault along the mth variable direction. As shown in
Egs. (1) - (3), the general form of the fault detection index
for the reconstructed sample z,, is discribed as

I(zy) = 2L Gz, (5)
where G represents C for SPE, D for T2, and & for .
The fault magnitude f,, is derived by minimizing I(z,):

fm = (grrz;G&m)ilé;{zGa:f (6)
The reconstruction-based contribution of the mth variable,

RBC,,, is the fault detection index of the reconstructed
portion along the mth variable direction.

Substituting Eq. (6) into Eq. (7), RBC,, of x is given as
T G 2
RBC,, = (&,.Gzy)” (8)

E‘;Z;L G€ m

2.2 RBC with KPCA

Alcala and Qin (2010) extended the RBC method for non-
linear processes with KPCA. KPCA models a nonlinear
relationship among variables by mapping measurements
from the original space to the feature space where linear
PCA functions well. In a similar way as the RBC method
with PCA, RBC of each variable is calculated on the basis
of the KPCA model.
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