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Abstract: Dynamic real-time optimization (DRTO) is a higher level online strategy that
exploits plant economic potential by making appropriate adjustments to the lower level controller
set-point trajectories. In this work, we propose a closed-loop formulation for a nonlinear
DRTO calculation in the form of a bilevel programming problem. A nonlinear differential
algebraic equation (DAE) system that describes the process dynamic behavior is utilized
with an embedded constrained predictive control (MPC) optimization subproblem to generate
the approximate closed-loop response dynamics at the primary economic optimization layer.
The bilevel DRTO problem is reformulated as a single-level mathematical program with
complementarity constraints (MPCC) by replacing the MPC optimization subproblem by its
Karush-Kuhn-Tucker (KKT) optimality conditions. We investigate the economics and control
performance of the proposed strategy based on a polymer grade transition case study in the
presence of plant-model mismatch and a disturbance, and a comparison is made with the
application of a linear DRTO prediction model.
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1. INTRODUCTION

Process plants operate in an ever increasing environment
of uncertainty and changing conditions, driven by factors
such as increased global competition, variation in utility
costs, restrictive environmental regulations, changing raw
material prices, varying product quality specifications, and
volatile market demands. Real-time optimization (RTO)
is a closed-loop economic optimizer in the process au-
tomation architecture that computes set-point targets for
the lower level regulatory control systems (Darby et al.,
2011). The traditional RTO strategy is designed based on a
steady-state model, which suffers from a limited execution
frequency resulting in suboptimal operation for processes
with frequent transitions and long transient dynamics.
Recent advances have transformed the steady-state RTO
to dynamic real-time optimization (DRTO) based on a
dynamic prediction model, hence allowing process tran-
sient economics be evaluated at a substantially higher
frequency.

Proposed DRTO strategies that follow a two-layer archi-
tecture generally perform economic optimization in an
open-loop fashion without taking into account the presence
of the plant control system, which we denote here as an
open-loop DRTO strategy. In this approach, the set-points
prescribed to the underlying control system are based on
the optimal open-loop trajectories under an expectation
that the closed-loop response dynamics at the plant level
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will follow the economically optimal trajectories obtained
at the DRTO level. Tosukhowong et al. (2004) design the
DRTO framework based on a linear(ized) process model
while Wiirth et al. (2011) utilize a nonlinear dynamic
model. An alternative to the multilevel configuration is
a single-level, economic model predictive control (EMPC)
approach that optimizes the plant economics at the con-
troller sampling frequency. Such a strategy aims to address
the issues of model inconsistency and conflicting objectives
between the traditional RT'O system and the MPC control
layer, and is usually designed based on the nonlinear dy-
namic model describing the process behavior. In this case,
the objective function could be based purely on economics
(Amrit et al., 2013), or a hybrid between cost and control
performance (Ellis and Christofides, 2014).

In previous work, we proposed a closed-loop DRTO strat-
egy with a rigorous inclusion of the future MPC control
calculations, which for constrained MPC cannot be ex-
pressed as an explicit continuous function to be readily
included in the optimization problem. The overall closed-
loop DRTO problem structure is in the form of a multilevel
dynamic optimization problem with embedded MPC opti-
mization subproblems, as illustrated in Fig. 1. It optimizes
the closed-loop response dynamics of the process where
the optimal control inputs are computed by a sequence
of inner MPC optimization subproblems. This scheme
computes the MPC set-point trajectories that determine
the best economics of the predicted closed-loop response,
under the assumption that the process follows the trajec-
tory calculated by MPC until the next DRTO execution.
The closed-loop DRTO formulation may be viewed as an
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EMPC approach due to explicit consideration of control
performance while making economic decisions. However,
it has the flexibility to be implemented less frequently at
the supervisory level because controller set-point trajec-
tories are the primary decision variables of the economic
optimization problem. This allows the existing plant au-
tomation architecture to remain unaltered, and the higher
frequency control calculation remains less complex and
computationally inexpensive.
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Fig. 1. Illustration of the multilevel program of the closed-
loop DRTO problem with embedded MPC optimiza-
tion subproblems

Our prior analysis based on a linear dynamic system
demonstrated that the closed-loop DRTO strategy outper-
forms the traditional open-loop counterpart under control
performance limitations where the controller has to be
detuned (Jamaludin and Swartz, 2014, 2015b). Despite
its advantages, the multilevel programming formulation
significantly increases the size and solution time of the
DRTO problem. In a recent study (Jamaludin and Swartz,
2015a), we proposed a closed-loop DRTO strategy in the
form of a bilevel programming problem in which only
a single MPC calculation is embedded over the DRTO
optimization horizon as an approximation of the rigorous
closed-loop response dynamics.

This paper extends the application of the closed-loop
DRTO strategy to a nonlinear dynamic system formulated
as a bilevel program. We consider implementation of linear
MPC on a nonlinear dynamic plant model. The following
sections describe the closed-loop formulation of the non-
linear DRTO problem, followed by the solution approach
adopted for the resulting dynamic optimization problem.
A technique to handle complementary constraints arising
from reformulation of the MPC optimization subproblem

to its KKT conditions, and formulation of an economic
objective function, are also be presented. A comparative
study of the closed-loop DRTO performance based on the
nonlinear and linear embedded dynamic plant model is
conducted using a polystyrene grade transition case study
in the presence of plant-model mismatch and a distur-
bance.

2. PROBLEM FORMULATION
2.1 Dynamic Optimization

For clarity of exposition, we first describe the conversion
of a nonlinear continuous dynamic model to its discrete
representation, which will later be used with the embedded
MPC optimization subproblem. Here we consider process
dynamic behavior described by a nonlinear differential
algebraic equation (DAE) system of the form:

DRTO( ) DRTO (.TDRTO (t)7 ZA,DR,TO (t)’ ,ELDR,TO (t))
0 S g]:)R'I‘() (i,DR,TO (t)’ Z’)DR.TO (t)7 aDR,TO (t))
AJDR'I‘()( ) — x
fort € [0, ty]
where °P%°(¢t) € R"» = differential state vector, Z°*7°(0)

= initial state vector, 2 € R* = algebralc state
vector, uDRTO( ) € R™ = control input vector, and ty =
final time in prediction/optimization horizon. To solve the
DAE system using an optimization (specifically, a non-
linear programming [NLP]) framework, the differential-
algebraic equations are discretized in the time coordinate
using a Backward Euler approximation.

DRTO( )

We assume that the controller sampling interval is the
same duration as the finite element interval At parti-
tioned over the optimization horizon, and thus piecewise
constant inputs (i.e. zero-order hold) can be conveniently
placed at every finite element. There are also other nonlin-
ear discretization approaches such as orthogonal colloca-
tion on finite elements (which corresponds to an implicit
Runge-Kutta method), should a more precise integration
procedure be desired. The resulting set of equations is
posed as constraints in the optimization problem. In our
case, the resulting sparse structured NLP is modeled us-
ing a specialized in-house modeling software package, a
Modeling Language for Dynamic Optimization (MLDO)
(Chong and Swartz, 2006), which generates AMPL code,
permitting solution by means of large-scale NLP solvers.

The bilevel closed-loop DRTO formulation consists of
a primary DRTO optimization problem based on the
nonlinear dynamic system (la) to predict the closed-
loop response dynamics, and an inner MPC optimization
subproblem based on the linear(ized) dynamic system
to calculate the optimal control input trajectories (1b).
The controller set-point trajectories §° are the decision
variables for the outer problem, whereas the control input
trajectories ;" are the decision variables for the inner
subproblem.

PPDRTO fDRTo

is a purely economic objective function. rep-
resents the dynamic model utilized for DRTO prediction
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