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Abstract: The main limitation of perturbation based extremum seeking methods is the
requirement of a multiple time-scale separation between the system dynamics, the perturbation
frequency, and the adaptation rate so as to avoid interactions and possible instabilities.
This causes the convergence to be extremely slow. In the present work, we propose a simple
modification to the perturbation-based extremum seeking control method that can be used
when the system cannot be accurately approximated by a Wiener-Hammerstein model for
which convergence rate acceleration schemes are available. The linear filtering used in the
perturbation based extremum seeking control for estimating the objective function gradient is
replaced by a recursive least square with forgetting factor estimation algorithm. It is shown
that this simple modification can accelerate convergence to the optimum by removing one time

scale separation.

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

1. INTRODUCTION

After the publication of (Krstic and Wang (2000)) in
which a formal proof of convergence has been established,
perturbation based extremum seeking methods (Blackman
(1962)) became once more an active and popular field of
research in the control community. The main limitation
of this class of extremum seeking methods remains the
requirement of a multiple time-scale separation between
the system dynamics, the perturbation frequency, and the
adaptation rate so as to avoid interactions and possible
instabilities (Krstic and Wang (2000)). The perturbation
frequency should be slow enough to consider the system
to be a static one. This, in turn, causes the convergence
to be extremely slow, i.e. two orders of magnitude slower
than the system dynamics. Though this is acceptable for
fast systems whose time constants range in seconds (typ-
ically found in mechanical and electrical systems) (Wang
et al. (2000)), it becomes unacceptable for chemical or bio-
chemical systems where the time constants are in hours or
days (Dochain et al. (2011)). This means that one would
need a month to a year to complete an optimization cycle.
Two concepts have been used to improve the conver-
gence rate of extremum-seeking control using perturba-
tions. Firstly, control algorithms can be applied to the
system in order to accelerate its dynamics and increase its
bandwidth (see e.g.(Krstic (2000); Chioua et al. (2007b))).
Secondly, a phase compensator can be used to correct for

the phase shift introduced by the system dynamics at the
perturbation frequency (Aryur and Krstic (2003); Krstic
(2000)). Control algorithms seek to reduce the phase shift
for a wider range of frequencies but are limited by the
system relative degree, the internal dynamics stability and
the presence of delays. Phase compensator, on the other
hand, concentrates on the given perturbation frequency
and requires the knowledge of the phase shift at that
frequency.

In (Atta et al. (2014)) and (Chioua et al. (2007a)), the
authors follow the phase compensation idea, but instead
of relying on an a priori value, the phase shift is esti-
mated based on the available measurements. In (Atta et al.
(2014)), a Kalman filter is used to estimate the phase and
amplitude of the first harmonic of the system output. In
(Chioua et al. (2007a)), the phase is estimated by modu-
lating the output with the quadrature of the perturbation
signal. A low frequency perturbation is added to determine
the sign of the gradient which is in turn necessary for the
stability of the phase adaptation loop. Applicability of the
phase compensation method proposed in (Chioua et al.
(2007a)) is restricted to systems that can be approximated
by a Wiener-Hammerstein model.

Recently, in (Guay and Dochain (2015); Ehsan and
M.Guay (2014)) the authors reformulate the extremum
seeking control problem as a time-varying estimation prob-
lem.
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In the the present work, we propose a simple modifica-
tion to the perturbation-based extremum seeking control
method that can be used when the system cannot be ac-
curately approximated by a Wiener-Hammerstein model.
We suggest to replace the linear filtering used in the
perturbation based extremum seeking control method for
the gradient estimation by a recursive least square with
forgetting factor estimation and show that this leads to an
acceleration of convergence to the optimum by removing
one time scale separation.

The paper is organized as follows: The next section intro-
duces the traditional perturbation method for extremum
seeking. Section 3 presents the modified perturbation
method with recursive least squares estimation for which
a convergence analysis is provided in Section 4. A simple
example is presented in Section 5 and Section 6 concludes
the paper.

2. EXTREMUM SEEKING USING PERTURBATIONS

The problem addressed is the steady-state optimization of
a nonlinear dynamic system as stated below:

min J(z,u) (1)

u

st.&=F(z,u)=0

where z € R" is the state, u € R™ is the control input,
F : R" x R™ — R" is a smooth function describing the
dynamics and J : R™ x R™ — R the objective function.

To solve this optimization problem online, the following
extremum-seeking controller is derived from the necessary
conditions of optimality, under the assumption that the
function J is convex.
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The perturbation based methods add an excitation signal
to the input in order to extract the gradient (Fig. 1). Note
that the objective function is supposed to be available or
directly measured (y = J(z,u)).

A high pass filter with cutoff frequency wy, isolates the
variations of this optimized variable from its average value.
The state that represents the high pass filter is denoted by
7. This signal is then modulated by the same excitation
signal. A low pass filter with cutoff frequency w; and
output ¢ will filter the resulting signal in order to get the
required gradient, & = %. Finally, an integral controller
with gain k drives this estimated gradient to zero.

The method can be summarized using the following equa-
tions:

= —kE, u =0+ asin(wt) (3)
= —wié +wiy — n)asin(wt) (4)
1= —wnn + wpy (5)

The value of the states at steady-state obtained from
& = F(z,u) = 0 is given by « = [(u). Then, the cost
function at steady-state is given by y = J(l(u), u).

Next the deviation variables are defined: u = 4 — u*,
y=y—y*and n =n—y* where y* is the minimum value

u =1+ asin(wr)
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Fig. 1. Extremum seeking control via perturbation method
inspired from (Krstic and Wang 2000).

of the cost function at steady-state y obtained for u = u*.
Then, the relationship between y and @ is expressed as
g=Jl(u* +a),u" +a)— J(U(u*),u*) = v(a).

Assuming that z is at steady state, the averaged system
for the three remaining variables (u, £, and 7) is obtained
by taking the average of the right hand side over [0, 2%].
The averaged states are denoted by the superscript (uj“
The averaged system reads (Khalil (2002)):

a” —he®

£ = | —wig® + $2a [~ v(a)sin(wt)dt (6)
>, . o

—wpn® + 2 [ v(a)dt

where @ = u® + asin(wt).

4
dt

Convergence is established in (Krstic and Wang (2000))
through the following steps:

e The exponential stability of the equilibrium point of
the above averaged system (u®, £*, and 7%) is first
proved.

e From there on, the exponentially stability of (u, £, and
1) (non-averaged) is established using the averaging
theorem (Khalil (2002)).

e This non-averaged system (u, &, and n) acts as
the “slow” manifold, while the original system & =
F(z,u) acts as the boundary layer system which is
assumed to be exponentially stable. Then, singular
perturbation ideas are applied to show that their
interconnection is also exponentially stable (Khalil
(2002)).

The key assumption is that the system is at quasi-
steady state, i.e., to a second order approximation,

- 1 ~anr2 CL2 ~a . a2
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(7)

But due to the dynamics of the system, the sinusoids
of frequencies w and 2w will have phase shifts which
will affect convergence. So, instead of using v(%) the
following dynamic operator P () is used:
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