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Abstract:

Gene regulation networks are complex, often involve thousands of genes, regulators and the
connections between them. To understand the complex interactions between these genes and
regulators with time, large empirical data is used the so called time-series gene expression data.
Many statistical tools are used to analyze this data but they often impose restrictions that reduce
the size of the network and make the solution less feasible from a biological perspective. We
developed the iterative subnetwork component analysis (ISNCA), a method that decomposes the
empirical data of two or more overlapping subnetworks with joint components at one iteration,
and updates the solution at the next iteration by subtracting the contribution of each of the
subnetworks. This predict - update method managed to relax the restrictions and solve larger
networks. We generalized the method in this paper to include both regulators and genes in the
joint partition, and demonstrated its accuracy using a synthetic network with a known matrix
decomposition. We also applied the ISNCA on large biological data taken from mice cells and
obtained larger and more accurate solutions than achieved by previous methods.
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1. INTRODUCTION

One of the main drivers of cellular processes is the gene
expression, the mechanism that produce proteins through
a complex regulatory network. These networks involve
thousands of target genes (TGs), transcription factors
(TFs) and the interactions between these. Data obtained
from measurements such as microarray and RNA sequenc-
ing are broadly used to asses the gene expression levels.
Many researchers attempted to make sense of these com-
plex networks and analyzed the data. As a consequence,
several matrix decomposition methods were developed in
the recent decades in order to extract meaningful biological
information. We can mention for instance the known prin-
ciple component analysis (PCA, see Raychaudhuri et al.,
2000; Wall et al., 2003), singular value decomposition
(SVD, see Wall et al., 2001, 2003), independent com-
ponent analysis (ICA, Liebermeister, 2002), and partial
least squares regression, (PLSR, Boulesteix and Strimmer,
2005). To further understand our measurements, we wish
to decompose the data matrix E into a component matrix
A (also called scores) and a coefficients matrix P (also
called loadings), or

E=AP (1)
In PCA for instance, the scores A are given by the left sin-
gular vectors of E, multiplied with the corresponding sin-
gular values, and the loadings matrix P are the right singu-
lar vectors of E. To exploit available biological knowledge
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in the literature and databases, several groups (the first
by Liao et al., 2003) developed the network component
analysis (NCA), a method that predicts the activity of the
TFs on the TGs by matrix decomposition provided with
a-priori biological knowledge and gene expression data.
This development led to a large number of publications
involving NCA. However, several restrictions on the de-
composed matrices ensure a unique solution up to a scaling
factor (Liao et al., 2003). These restrictions prevent often
the incorporation of known biological phenomenons, such
as redundancy of regulation and co-regulation. Without
these, the solution is less feasible from biological perspec-
tive (Jayavelu et al., 2015) and is simply reduced to a
theoretical and meaningless solution. Furthermore, these
restrictions reduce the size of the network significantly,
potentially losing TFs and TGs that may be important for
the system under study.

To address this problem, we developed a novel method
called Iterative Sub-Network Component Analysis (IS-
NCA, Jayavelu et al., 2015). Our method iterates be-
tween two or more smaller subnetworks, each satisfies the
restrictions of the NCA, and provides a solution to the
entire (larger) network (that usually cannot be solved by
the NCA). The ISNCA employs a predict-update strategy,
that incorporates the information of the joint partitions of
the networks at one iteration, to update the following one.
In this manner, our method relaxes the NCA restrictions
on the entire network, and significantly enlarge the size
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of the solution. Additionally, it relaxes the restrictions
of redundancy and cooperativity, and thus render the
solution more biologically feasible. We demonstrated the
ISNCA previously on a small network (5-10 components)
and on large biological measurements taken from breast
cancer cells (Jayavelu et al., 2015), but it was not tested
on data with a pre-known solution to evaluate its accuracy
and performance. Here, we extended the work to a more
general case, where the joint partition can contain TFs and
their TGs, and studied the accuracy of its solution using
a synthetic network with 15 genes and 8 TFs with pre-
known activity patterns. The ISNCA yielded predictions
with high fidelity, where traditional NCA failed to apply.
We also tested the ISNCA on a large expression data with
several replicates, taken from mouse cells, and showed that
our method enlarged the size of these networks by 15%.

The remaining of the paper is organized as follows: Section
2 describes the ISNCA method, and presents the con-
cept with an example. Section 3 presents simulations of
a synthetic case study, and compares the true temporal
activities of the TFs to the activities predicted by the IS-
NCA. We demonstrate the ISNCA on real gene expression
measurements, taken from mice T-cells. We discuss some
aspects of the ISNCA, and conclude in section 4.

2. METHODS
2.1 Mathematical formulation

One of the matrix decomposition methods mentioned in
the previous section is the network component analysis
(NCA). The objective is to decompose the matrix E into
the matrices A and P, where A has a predefined structure.
More specifically,

E=AP+e¢ (2)
where the measurement matrix £ € R"*" contains the m
samples (time points or conditions) of the n components,
the matrix A € R™*! is the topology matrix that defines
the sign and size of the connections of n components
to their { regulators. P € R!*™ represents the temporal
activity of the regulators, or how each of the [ regulator’s
pattern propagates with time. The term ¢ is associated
with the measurement noise. The decomposition (2) of E
(given) into A and P (unknown) can be achieved by solving
the following optimization problem

min |[E — AP)|| (3a)
st A€ Z (3b)

Here Zy (given) represents the a priori known structure for
A where certain elements are fixed to be zero. A zero entry
occurs when no data or knowledge exists that proves any
association (connection) between the regulators and their
corresponding components (Liao et al., 2003).

Three conservative, but essential restrictions to ensure a
unique solution to (3) exist (discussed previously in Liao
et al., 2003). Briefly, in addition to the Z; constraint,
(i) the matrix A must have a full column rank, (ii) each
column of A must have at least (I — 1) zeros, and (iii) the
predicted matrix P must have a full row rank. To satisfy
these conditions, a pruning procedure removes (usually
randomly) columns and rows of A until the first two con-
ditions are satisfied. This procedure significantly reduces

the size of the network, and often removes important
components that may be needed for the study. We wish
to relax or eliminate this procedure, in order to analyze
larger networks.

2.2 Our iterative subnetwork component analysis

Recall the matrices £ € R"™™ A € R™! and P €
R>™ from (2). We first divide the initial network into
two subnetworks i, (i € 1,2), sharing common genes
(TGs) and/or regulators (TFs). Let the subscripts « and
¢ represent the exclusive (unique) and joint (common)
partition components of each subnetwork ¢, respectively.

We distinguish between genes that are exclusively in
partition ¢ and are regulated by TFs in the exclusive
partition j (j € 1,2, Ay, Fig. 1), genes that are
exclusively in subnetwork ¢ and are regulated by TFs in the
joint partition (A,,.), genes that are in the joint partition
¢, but regulated by TFs in the exclusive partition i (Aey, ),
and genes that are in the joint partition, and regulated by
the TFs in the joint partition (A..).

Then the matrices £ and A in equation 2 for each
subnetwork 4 can be decomposed by the following:

Eu Au1u1 Aulc Pu
si-an-[] [ ]3] w

EC Cu1 cC
Eu Auu Auc Pu
sean=[] <l e]i] o

where E,, € R"™:*™ and E. € R™ ™ denote the
expression matrices of sub-networks i = 1,2, and n,; +
Ny2 + Ne =N Auiui € R Xlui’; Amc and Acui S Rncxzui7
and A.. € R >l denote the partition matrices of A of
subnetwork 4, and l,,, + l,, + . = [. In all the following,
when we write A;, E; or P;, we refer to matrices of the
entire subnetwork 4, including both their unique and joint
partitions.

To simplify the problem, we assume that genes exclusively
in subnetwork ¢ are not regulated by any TFs that is
exclusively in the other subnetwork. The two subnetworks
can be combined to one overall network presentation:

Eu1 Au1u1 Aulc 02 Pu1
E=AP= Ec - Acu1 Acc Acug Pc (5)
Euz 01 Augc Auqu Pu2

with the zero matrices 0; € R™w2%"1 and 0y € R™u1 Xluz,
The simplification can be relaxed by replacing the zero
matrices 0; and Oy in A with A,,,, and A,,,,, respec-
tively.

Ezxample 1. ISNCA topology network matriz: Consider a net-

work with 6 TGs and 3 TFs (Fig. 1). We can decompose A to its unique
and joint partitions as:

1 0 1 0
Aulul = |:0i| ’ Aulc = |:1i| ’ Acu1 = 10| ,Acc=|1], (6)
0 1

and the overall network equation is
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