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a  b  s  t  r  a  c  t

In recent  years,  researchers  have  explored  the  application  of Reinforcement  Learning  (RL)  and  Artificial
Neural  Networks  (ANNs)  to the  control  of  complex  nonlinear  and  time  varying  industrial  processes.  How-
ever RL  algorithms  use  exploratory  actions  to learn  an  optimal  control  policy  and converge  slowly  while
popular  inverse  model  ANN  based  control  strategies  require  extensive  training  data  to  learn  the  inverse
model  of  complex  nonlinear  systems.  In this  paper  a novel  approach  that  avoids  the  need  for  extensive
training  data  to construct  an  exact  inverse  model  in  the  inverse  ANN  approach,  the  need  for  an exact  and
stable  inverse  to  exist  and the  need  for  exhaustive  and  costly  exploration  in  pure  RL based  strategies  is
proposed.  In  this  approach  an initial  approximate  control  policy  learnt  by an artificial  neural  network  is
refined  using  a  reinforcement  learning  strategy.  This Partially  Supervised  Reinforcement  Learning  (PSRL)
strategy  is  applied  to the  economically  important  problem  of  control  of a semi-continuous  batch-fed
bioreactor  used  for  yeast  fermentation.  The  bioreactor  control  problem  is  formulated  as  a Markov  Deci-
sion Process  (MDP)  and  solved  using  pure  RL and  PSRL  algorithms.  Model  based  and  model-free  RL  control
experiments  and  simulations  are  used  to demonstrate  the  superior  performance  of  the  PSRL  strategy
compared  to  the  pure  RL  and  inverse  model  ANN  based  control  strategies  on  a variety  of performance
metrics.

©  2018  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Control of bioreactors is a challenging problem of great
economic significance. The inherent nonlinearity of biological pro-
cesses precludes the use of traditional linear control strategies.
Thus exploration of alternate nonlinear and optimal strategies is
of interest. In recent years Reinforcement Learning (RL) based con-
trol strategies have been successfully applied to the control of
outstanding nonlinear control problems not amenable to the tech-
niques of classical control [1,2]. Recent years have also witnessed
a synergetic growth of the fields of machine learning and non-
linear control leading to the application of traditional artificial
intelligence approaches to a wide variety of control engineering
problems. RL is inspired by the ability of animals to learn opti-
mal  actions to achieve complex long term goals by maximizing
cumulative environmental rewards. In the RL framework the con-
trol problem is viewed as an optimal sequential decision problem
referred to formally as a Markov Decision Process (MDP). The solu-

∗ Corresponding author.
E-mail addresses: jaganathapandian@vit.ac.in (B.J. Pandian),

mathew.m@vit.ac.in (M.M.  Noel).

tion to an MDP  is learned by interacting with the environment by
taking exploratory actions and observing environmental rewards.
The learner referred to as an agent takes actions in each state and
transitions to the next state after observing a scalar environmental
reward signal. The reward signal represents the feedback from the
environment regarding the desirability of taking a particular action
in a given state. The reward function and the state transition func-
tion may  me  unknown in the general case. RL attempts to choose
actions to maximize the expected cumulative discounted reward.
Future rewards are discounted to favour quicker progress to the
goal state.

A fundamental idea in RL is the concept of a Value function
V : S → R  which indicates the desirability of each state by assign-
ing a real number to each state (desirable states leading to higher
rewards are assigned higher values). Given the Value function, the
optimal action in a certain state s is the action that moves the sys-
tem to the next state s’ with the largest value V(s’). The control
policy is a function � : S → A that specifies the action to be taken in
each state. The ultimate goal of RL is to compute an optimal control
policy �∗ that specifies the best action to be taken in each state.
Since the optimal action in a certain state is the action that moves
the system towards the next state with the maximal value, the
Value function must first be computed. Thus the problem of com-
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Nomenclature

s state vector
a vector of control actions
Psa(s’) state transition probabilities
R(s) reward for taking action a in state s
�(s) Policy function that determines action taken in state

‘s’
V�(s) cumulative discounted reward for following policy

� starting from state s
�* optimal Policy function
V*(s) optimal Value function

V̂(s) estimate of the optimal Value function
x [x1 x2]T, state vector for the bioreactor system
x’ next state after control action in current state x
U [u1 u2]T, action vector for the bioreactor system
� discount factor to favour immediate rewards
Li number of discretization levels used for state vari-

able xi
Lu number of discretization levels used for feed sub-

strate concentration u2
�i process parameters, i = 1, 2, 3, 4
h [h1 h2 h3 h4]T, state vector for the quadruple tank

process
f [f1 f2]T, action vector for the quadruple tank process
Q(s,a) Q value of a state-action pair
ε exploration probability

 ̨ learning rate

MSE 1
T

T∫
0

e(t)2dt

ITAE 1
T

T∫
0

t
∣∣e(t)∣∣dt

ITSE 1
T

T∫
0

te(t)2dt

IAU 1
T

T∫
0

∣∣u(t)
∣∣dt

puting the optimal control policy can be reduced to the problem of
computing the optimal Value function. Thus the difficult problem of
learning a control policy is reduced to the easier problem of learn-
ing a Value function in RL. The Value function corresponding to a
particular policy � is defined as the expected value of cumulative
discounted rewards (1).

V�(s) = E[R(s0) + �R(s1) + �2R(s2)...|s = s0, �] (1)

The expected value is taken in the Value function since state
transitions are probabilistic in general. A deterministic system is
a special case where all state transition probabilities except one
are zero. The RL problem can be mathematically formulated as a
Markov Decision Process (MDP).

Formally a MDP  is a 5-tuple (S, A, Psa, �, R):
S – set of all possible states s, s ∈ Rn (where n is the dimension

of the state vector)
A – set of all possible actions a, a ∈ Rm (where m is the dimen-

sion of the action vector)
Psa(s′) – the probability of transitioning to state s’ by taking an

action a in state s

� ∈ [0,  1) - discount factor
R : S × A → R  - reward function
The Policy function � maps the current state to the action to be

taken by the controller. A policy that maximizes the total payoff is
an optimal policy �∗ and is therefore given by (2):

� ∗ (s) = max
�
V�(s) (2)

The principal advantage of the reinforcement learning approach
is its general applicability to difficult and poorly understood con-
trol problems [1–4] since it requires only the availability of a scalar
reward signal. Over the past few years RL based controllers were
proposed for controlling highly nonlinear processes [5–9]. The Q-
learning approach [10,11] is a class of learning strategies commonly
applied to model free learning problems. Data- driven models were
also used for RL approaches to consider the actual process dynam-
ics in the working environment [12,13]. Since the RL framework
assumes finite state and action spaces, a major challenge in apply-
ing reinforcement learning to process control problems is the need
for discretization of continuous variables resulting in exponential
growth of the number of discretized values. A wide variety of func-
tion approximation approaches have been proposed to alleviate the
problems associated with discretizing continuous state and action
spaces [9,14–18]. Function approximation methods are usually
applied to value function or policy function to reduce quantization
error introduced by the discretization of continuous state spaces.
Since RL operates by taking exploratory actions and receiving envi-
ronmental rewards convergence of RL algorithms can be improved
with directed search [19–22]. Exploratory action are necessary to
find a good control policy however random exploratory actions
may  result in poor rewards; thus a trade-off between exploration
and exploitation is unavoidable in RL. Since exploratory actions are
in general costly RL approaches that reduce the need for exten-
sive random exploration are of interest. One possible approach is
to obtain supervisory input for the RL learning problems from an
approximate inverse model neural controller.

In this paper an approach that uses an approximate inverse
model ANN controller [23–25] to reduce the need for exploratory
actions and speedup convergence of RL algorithms is proposed. In
this partially supervised approach an approximate control policy
learnt by an inverse model ANN controller is refined using rein-
forcement learning. Existing approaches that combine RL and ANNs
employ ANNs as function approximators to learn the Value or Q
functions or to generalize the Policy function learnt using RL to
unseen states. The approach proposed in this paper significantly
differs from these approaches in using an inverse ANN scheme
to learn an approximate control policy which is refined using a
computationally efficient RL based approach. A pure inverse ANN
approach requires extensive training data to learn a control policy
for complex nonlinear systems. In many cases extensive training
data is unavailable and an exact inverse model of the plant may not
even exist or be stable theoretically. Thus the proposed approach
avoids the need for extensive training data to construct an exact
inverse model in the inverse ANN approach, the need for an exact
and stable inverse to exist and the need for exhaustive and costly
exploration in pure RL based strategies. In the PSRL approach pro-
posed in this paper, Bellman’s equation which relates the Value
function and Policy functions is used to compute an approximate
Value function using the approximate control policy learnt with the
inverse ANN approach. This approximate Value function is then
refined using Value iteration. This approach for initializing RL is
computationally cheap because Bellman’s equation can be solved
efficiently as they are linear in the unknowns V(s). The Partially
Supervised Reinforcement Learning (PSRL) algorithm proposed in
this paper is tested by applying it to the challenging and econom-
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