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Abstract: Motivated by the lack of hardware analysers for particle size distribution (PSD)
and solute concentration measurements in industrial crystallizers, this work investigates the
feasibility of designing alternative monitoring tools based on state observers. The observability
and detectability properties of the discretized population balance equation accounting for crystal
growth, attrition and agglomeration coupled with energy and solute mass balances are studied.
A systematic methodology for sensor selection based on nonlinear observability and detectability
principles is proposed and applied. Results are corroborated by a machine learning technique
(the self-organizing map), leading to the fact that the solute concentration is distinguishable
with temperature measurements, while the PSD is not. The results represent the starting point
for future detector design where temperature measurements are used to infer composition, while
the estimation of the PSD is done in ”open loop” fashion.
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1. INTRODUCTION

Batch crystallization is an important separation process to
obtain high value-added chemicals in crystalline form from
liquid solutions in pharmaceutical, food and fine chemical
industries. As most of the particulate processes, the quality
of the solid product is determined by its particle size
distribution (PSD), which is the result of the combination
of events at the microscopic and macroscopic scale during
the batch run. The microscopic events are governed by
complex kinetic interaction between the solute molecules
and the crystal lattice, and diffusion mechanisms, whereas
the macroscopic events are related to the crystallization
operation (solute concentration, temperature profile, mix-
ing). Thus, the achievement of the desired yield and qual-
ity targets of the final crystalline product relies on an
efficient monitoring tool for both separation supervision
and control. However, online measurements of the solute
concentration and PSD are not often available due to tech-
nological and economical limitations (Simon et al. (2015)).
These unmeasurable process variables can be estimated
by real time simulation models in parallel to the process.
However, models even based on first-principles typically
exhibit structural and parametric mismatch with respect
to the real process. Thus, the quality of the estimation
of the process variables tend to degrade. A remedy for
this deficiency is the use of state observers that combine
information from two sources, namely a process model and
available online measurements.

The natural framework for particulate process modelling
is the population balance equation (PBE) (Randolph and
Larson (1971)) in the form of a partial differential equation
(PDE) describing the evolution of the number of crystals
along the size and time domain. However, the PBE cannot
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be easily employed for estimator implementation purposes,
because its analytical solution may not be obtained. Two
main approaches have been proposed to overcome this
problem: (i) the use of a reduced model in terms of a finite
number of its moments (Randolph and Larson (1971)), (ii)
and the discretization of the PBE (Hounslow et al. (1988))
resulting in a set of ordinary differential equations.

The problem of designing state observers for monitoring
and/or control of the time evolution of the crystal phase
has been extensively addressed with the use of the moment
model accompanied by: (i) moment measurements (Mes-
bah et al. (2011)), (ii) solute concentration measurements
(Shi et al. (2005)), (iii) moment, composition and tem-
perature measurements (Nagy and Braatz (2003)). This
model guarantees simplicity and tractability for online use
due to its low dimensionality. However, the reconstruction
of the PSD from a finite number of its moments is still an
open problem (Cogoni and Frawley (2014)) and nonlinear
crystallization phenomena such as agglomeration cannot
be incorporated. On the other side, only a few papers deal
with the discretized PBE to derive soft sensors for monitor-
ing and control strategies. Mesbah et al. (2012) use it for
a moving horizon observer driven by the online measure-
ments of the PSD; Bakir et al. (2006) propose a high gain
observer assuming that the measurement of the number of
nuclei is available. Finally, Abbas and Romagnoli (2007)
propose the use of the model without any innovation term.
However, the monitoring strategies mentioned above can
be unlikely implemented in industrial scale, because, as
highlighted at the beginning of the introduction, online
PSD measurements are rarely available.

In this scenario the identification of secondary measure-
ments to derive monitoring schemes based on states ob-
servers or detectors for industrial applications still re-
mains an open issue. This motivates a more accurate and
systematic analysis of the observability and detectability
properties of the crystallization model. In particular, the
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answers to the following questions are researched: (i) can
the entire set of performance and process variable be
reconstructed through measurements of secondary vari-
ables? (ii) can a subset of states be detected through
measurements of secondary variables? (iii) what should
be the sensor configuration to extract proper information
regarding the dynamical evolution of the system?

This paper proposes a systematic methodology amenable
to perform the sensor selection (extendible to any pro-
cess) based on robust exponential (RE-)observability and

detectability arguments (Alvarez and Ferndndez (2009)).
The methodology is applied to an industrial batch crystal-
lization system which accounts for growth, attrition and
agglomeration phenomena through the discretized PBE.
The results are corroborated using a data-derived tech-
nique, with the data generated by gCRYSTAL simulations
of the model under various operating conditions. For this
purpose the self-organizing map (SOM) (Alhoniemi et al.
(1999)) accompanied by measures of topological relevance
(MTR) (Corona et al. (2012)) has been selected allowing
the visualization and quantification of the relationship
between primary (i.e. to be estimated) and secondary
(i.e. measured) variables. In process engineering the SOM
technique has been applied in online and offline fashion for
fault detection, modelling, sensitivity analysis (Alhoniemi
et al. (1999)), process analysis and, sensor selection cou-
pled with MTR (Corona et al. (2012)) for continuous pro-
cesses. In this work, the SOM is applied to batch processes
for observability and detectability analysis purposes.

Our systematic analysis leads to the following results:
the concentration (or temperature) is distinguishable with
temperature (or concentration) measurements, while the
subset of number of particles per each class of length is
not distinguishable with composition and/or temperature
measurements. Consequently, the most effective monitor-
ing scheme for the process may be a state detector with
innovation based on temperature and/or concentration (if
available) measurements on the dynamics of the above
mentioned states, while the estimation of the discrete PSD
should be performed in open loop fashion. The assessment
of the performance of this monitoring scheme is out of the
scope of this work.

The paper is organized as follows: the model of the in-
dustrial crystallizer is presented, and nonlinear observ-
ability and detectability concepts are introduced. Then,
the proposed systematic analysis of the observability and
detectability properties is explained and applied to the
crystallization process. Finally, the results of the approach
are corroborated by using the SOM.

2. MODEL OF THE BATCH CRYSTALLIZATION

Consider the seeded flash-cooling crystallization of the
chemical a in the solvent s. The model of the process
consists of material (for the liquid and solid phases)
and energy balances. The particulate feature of the solid
product is modelled with the PBE (Randolph and Larson
(1971)). Under the assumptions of perfect mixing, size
independent crystal growth rate, absence of crystals and
solute in the vapour flow, dilute solution, the crystallizer
model (1) follows:
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The model (1) accounts for the following the crystalliza-
tion kinetics (2). The size independent power law kinetics
for crystal growth G (2a) is widely used in crystallization
modelling (Abbas and Romagnoli (2007); Mesbah et al.
(2011)) because of its simplicity. The secondary nucleation
By (2b) is modeled through the Evans kinetics (Evans
et al. (1974)) when only crystal-impeller collisions are
considered. The birth B (2¢) and death D (2d) functions
due to agglomeration phenomena are modelled according
to Hounslow et al. (1988). Note that the modelling of the
agglomeration phenomena is a source of nonlinearities for
the system. The agglomeration Kernel (2¢) is calculated
according to an empirical expression.
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In (2) kg, kei, L™, aq are kinetics parameters whose nu-
merical values are estimated based on plant data. Cs+(T)
is the solute concentration at saturation. Ng, Np and ¢
are impeller parameters (power and flow numbers, energy
dissipation rate respectively).

2.1 Discretization of the population balance equation along
the internal coordinate L

The model (1) is a system of integro-partial differential
equations which is solved by the use of numerical methods
(Abbas and Romagnoli (2007)). The most adopted dis-
cretization scheme is the backward differentiation formulae
(BDF) also known as upwind procedure.
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The application of (3) to (1d) leads to the subset of ODEs
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where the sub-index 0 refers to the minimum size of crystal
taken into account (i.e. nuclei dimension), while the sub-
index max refers to the maximum size considered. By;,
B; and D; are the discretized versions of the kinetics
equations (2b)-(2d). The Jacobian Agppp(n;, AL, L;,T,C)
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