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Abstract: In this contribution, full probability distribution of parameters of ARX model is
obtained for on-line problems by means of Bayesian approach and Markov chain Monte Carlo
method (MCMC), which provides the ability to be applied on time-varying ARX models as well.
Full probability distribution of parameters represent whole available knowledge of parameters.
So, decision makers can follow any policies to make decision about point estimation, like
dynamic point estimation. Moreover, the Bayesian approach has great potential in combining
sources of knowledge much more easier. To decrease the computational efforts, full probability
of model parameters are updated based on size-varying partitions. Furthermore, incorporating
the posterior probability of previous partition into the jump probability of current partition, in
MCMC method, improves the performance of the proposed algorithm from the computation and
convergence rate point of view. Simulation results demonstrate the effectiveness and validity of
the proposed algorithm.
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1. INTRODUCTION

One of the fundamental differences between the beliefs of
the Bayesian and frequentist statisticians is that Bayesian
ends up with a function of the model parameters given
the observed data and inference is made in the form
of probability distribution of parameters rather than a
simple point estimate which is common in frequentist
approach (Brooks, 2003).

Intrinsic potential of Bayesian approach brings superb help
to combine sources of knowledge, utilize all the available
information, and also give decision makers more knowl-
edge to make decision. In system identification (SI), more
specifically, Bayesian removes the limitation of normal as-
sumption of distribution of noise, so Bayesian shows great
results when the available data is limited (Ninness and
Henriksen, 2010). Another advantage that encourages one
to employ Bayesian in SI is that it provides the confidence
about parameters as a byproduct of solution (Baldacchino
et al., 2013). Besides, overfitting is not meaningful in
Bayesian methods (Green, 2015). The main obstacle on the
way of using Bayesian is its heavy computational efforts.

In control society, Peterka (1981), explained for the first
time how Bayesian concept can be used in SI problems.
How to solve the equations obtaining from Bayesian in
SI problems was major hindrance to take the advantages
of Bayesian in SI. So, some restrictive assumptions were
made to simplify the equations like calculating just specific
features of the model parameters distribution; mean and

variance for example (Huang and Wang, 2006). Another
approach was using conjugate probabilities to keep poste-
rior distribution unchanged (O’Hagan and Forster, 2004).
Along with progressing well-developed processors which
facilitates computations, the simplifying assumptions were
not necessary anymore and Markov chain Monte Carlo
methods (MCMC) were employed in the Bayesian ap-
proach for SI problems. Some innovative contributions on
how MCMC and Bayesian approach can be used in SI is-
sues are available in Green (2015); Ninness and Henriksen
(2010); Baldacchino et al. (2013).

Previous researches about using MCMC methods in SI
with Bayesian approach were focused on off-line problems
due to heavy computations. Moreover, obtaining full prob-
ability distribution of parameters in on-line problems was
not their main concern; just mazimum of the distribution
or expectation of it was chosen in on-line problems (Huang
and Wang, 2006). However, determining only one point
from the distribution has somehow conflict with Bayesian
concept in SI, in contrast to the frequentist method.

In this research, computing the full probability of model
parameters stimulating from posterior probability using
MCMC in Bayesian method is taken into account. Hence,
full probability distribution of estimated output can be ob-
tained readily. Due to the heavy computations of MCMC
methods, partitions with variable size are considered; the
size of the partitions are varied based on dynamic of
systems. Also, to represent the concept of forgetting factor
in SI, a factor is introduced in proposed method which
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assigns the importance of posterior probability of previous
partition into posterior probability of current partition. For
reducing the severity of computational problems, along
with using previous posterior probability distribution as
prior knowledge of next partition, we propose combining
the posterior probability of previous partition in jump
distribution of current partition too.

The rest of the paper is structured as follows. In Section
2, formulation and concept of Bayesian in estimation of
model parameters, off-line form of linear static and dy-
namic models, are portrayed. Section 3 discusses about
the MCMC methods as a solution of solving equations
demonstrated in Section 2; in addition, the main steps of
Metropolis-Hastings algorithm as one of the well-known
MCMC algorithm, which is used in this paper, is pre-
sented. Section 4 describes proposed algorithm for on-
line Bayesian identification of ARX models to get the full
probability distribution of parameters. In Section 5, the
simulation results of applying proposed method are pre-
sented. Finally, the paper is concluded in Section 6.

2. SYSTEM IDENTIFICATION FROM BAYESIAN
POINT OF VIEW

In Bayesian system identification, the parameters of the
model are assumed as both stochastic and unknown phe-
nomena (Anscombe, 1961; Bishop, 2006). Intuitively, the
more one parameter is known, the fewer it is dispersed.
The final aim in Bayesian approach is determining the
probability distribution of parameters of the model which
is called posterior probability. This distribution is obtained
based on the observed data and prior knowledge. Bayes
theorem light the way of how to incorporate these two
sources of the information (Bishop, 2006; Khatibisepehr
et al., 2013):
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where, P(0|D) is posterior probability of parameters given
the data, P(D|0) is likelihood function or probability model,
P(6) is prior probability of parameters, and P(D) is called
evidence. Peterka (1981) shows that if observations, i.e.
input-output pairs, are assumed to be identically indepen-
dent distribution (i.i.d), equation (1) can be extended to
reach equation (3).
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In equations (3) and (4), u, and y, are input and output
when time is 7, respectively.

The probability distribution of the noise is an essential key
to obtain the probability of the model parameters because
noise in SI problems is enumerated as the major source
of uncertainty on parameters. In linear static models,
equation (5), the probability model is achieved as equation
(6) (Nelles, 2001; Lindley and Smith, 1972).

Y = X710 +v. (5)

where,

In (5), Y is a (N x 1) vector of outputs, X is a (n x N)
regression matrix and 6 is a n x 1 vector of parameters or
coefficients. Moreover, v is N X 1 noise vector.
To obtain the probability of model parameters, the major
part is calculating the probability model because by mixing
it with prior probability, posterior probability can be easily
acquired. Equation (6) shows the probability model of
static linear model parameters.

P(Y|0.7.X) = P, (Y — X"0], X). (6)
In (6), P, is probability distribution of noise and 7 is
parameters of this probability distribution. There is no
restriction on types of probability distribution of noise.
Assuming normal distribution for it, can decrease some
computational complexities; however, it is not necessarily
needed.
For linear dynamic models presented in the following

Yt = G(qa H)Ut + H(q7 Q)Eta (7)

one-step-ahead optimal predictor is equal to equation (8).
In equations (7) and (8), u; is a vector of observed ex-
ogenous input, G(g,0) and H(q,0) are transfer functions,
rational in the forward shift operator ¢, and 6 is a vector
of model parameters (Nelles, 2001).

Geje—1(0) = H™(q,0)G(q, 0)ur + [L = H™'(q,0)]ye. (8)
The goal of Bayesian approach in estimation of linear
dynamic models can be defined as deriving the probability
distribution of parameters of one-step-ahead optimal pre-
dictors.

Same as linear static models, by assuming observations as
i.i.d, the probability model can be shown as follows.
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Equations (6) and (9) generally do not have close-form
solution. In Section 3, methods of solving these equations
are discussed.

3. OVERVIEW OF MCMC METHODS AND THEIR
CONVERGENCE

8.1 Implementation of MCMC method

MCMC methods involve numerically computing the re-
quired probability distribution. In these methods instead
of generating samples from desired probability distri-
bution, 7(6), which cannot be done directly, producing
Markov chain with equilibrium distribution of 7 (8) is taken
into account. Because stimulating samples from the latter
probability distribution is more straightforward (Smith
and Roberts, 1993).

There are a variety types of MCMC methods which can be
found in Brooks et al. (2011). In this research, Metropolis-
Hastings (MH) algorithm is used because of its strength in
stimulating multivariate distribution. In addition, the con-
ditional probabilities in this work is hard to find (Chib and
Greenberg, 1995). The main steps of the MH algorithm are
clearly presented as follow (Ninness and Henriksen, 2010).

MH Algorithm:

(1) Initializing 6y such that P(6]Y) > € >0
(2) Set k=1
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