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a  b  s  t  r  a  c  t

This manuscript  develops  an  algorithm  that  fuses  Carleman  moving  horizon  estimation  (CMHE)  and
Carleman  model  predictive  control  (CMPC)  together,  to design  an  output  feedback  receding  horizon
controller.  CMHE  identifies  the  system  states  as  the  initial  condition  for CMPC  to  make  optimal  control
decisions.  The  control  decisions  made  by CMPC  update  the  dynamic  models  used  in CMHE  to  make
more  precise  estimations.  Modeling  the  nonlinear  system  with  Carleman  approximation,  we estimate
the  system  evolution  for both  CMHE  and  CMPC  analytically.  The  Gradient  vectors  and  Hessian  matrices
are  then  provided  to facilitate  the  optimizations.  To  further  reduce  real-time  computation,  we  adapt
the  advanced-step  NMHE  and  advanced-step  NMPC  concepts  to our  CMHE/CMPC  pair  to  develop  an
asCMHE/asCMPC  pair.  It pre-estimates  the  states  and  pre-designs  the  manipulated  input  sequence  one
step in  advance  with  analytical  models,  and  then  it updates  the  estimation  and control  decisions  almost
in  the  real-time  with  pre-calculated  analytical  sensitivities.  A nonlinear  CSTR  is  studied  as  the illustration
example.  With  CMHE/CMPC  pair,  the  computational  time  is decreased  to one  order  of magnitude  smaller
than  standard  nonlinear  MHE  and  nonlinear  MPC.  With  asCMHE/asCMPC  pair, the  real-time  estimation
and  control  decisions  takes  a negligible  amount  of  wall-clock  time.

©  2018  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Model predictive control (MPC) is an optimization-based strat-
egy in control engineering. It has been attracting attention for
its readiness in dealing with multi-input-multi-output systems, in
handling various bounds, in rejecting disturbances and in tolerat-
ing model-mismatches. Despite the many advantages it has, the
application in industrial environment has been limited. One of the
major barriers is the heavy computational burden in solving the
associated dynamic optimization problem in real-time.

Researchers have developed many approaches to achieve
computational acceleration. The advanced-step NMPC (asNMPC)
algorithm, published by Biegler and coworkers in [1–4], has focused
on solving complex optimization problems off-line then perform-
ing an update with linear approximation of nonlinear sensitivity
in real-time. Multi-parametric MPC  developed by Pistikopou-
los and coworkers in [5,6] accelerates computation via querying
response hypersurfaces. Fast approaches to solve MPC have also
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been reported in applications, such as extended differential flat-
ness approach in control and estimation of lithium-ion batteries.
[7–9]

Most MPC  designs assume that all system states are measur-
able and immediately available at the beginning of each sampling
time. This assumption is rarely true in industrial practice. Estima-
tors are required to obtain the information of the system state. In
addition, estimators help reducing the effect of model mismatches
and unknown disturbances [10]. It is reasonable to integrate the
design of controller with an estimator to account for the lack of
state information. Huang et al. presented an Extended Kalman Fil-
ter (EKF) and NMPC scheme in [11,12]. Haseltine et al. reported a
critical evaluation of EKF vs. MHE  in [13]. MHE  is an optimization-
based estimation method. It uses limited information regarding the
input, output and plant model to discover system states. The basic
design of MHE  is similar to that of MPC. It also handles constraints
and bounds in a straightforward manner, but instead of predict-
ing into the future, MHE  uses a sliding window of outputs into the
past. Despite the ongoing debate between EKF and MHE [14], for
the purpose of developing an estimation and control pair, we  pick
MHE  as the ideal technology to combine with MPC, since they share
the same state-space model.
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A basic MHE  and MPC  pair has the following interconnection.
The state estimation identified by MHE  serves as the initial con-
dition of each receding time window for MPC  to make optimal
control decisions. As the process recedes, these control decisions
are continuously updated in the process model used by MHE  to
make MHE  more precise. This way, the interconnection between
MHE  and MPC  is completed. MHE  and MPC  are designed separately,
aligning with the Separation Principle, but they collaborate closely
with each other to form the MHE/MPC pair. Expectedly, MHE  has
computational delay issues for the same reasons as MPC. That is a
significant obstacle for the application of MHE/MPC pair.

Motivated by the above issue, we propose bilinear Carleman
approximation to formulate a new scheme of the MHE  and MPC
pair, CMHE and CMPC. Carleman approximation is also known as
Carleman linearization. [15–17]; the theoretical basis is to express
a finite dimensional nonlinear system with an infinite dimensional
linear one. It carries nonlinear dynamic information of the original
system, which reduces approximation errors compared with classic
linearization methods. Our previous work has reported the struc-
ture of CMPC [18], explored its formulation [19,20] and sensitivity
analysis [21]. We  also investigated the structure of CMHE [22], its
application [23], and stability analysis [24]. In this manuscript, we
improve our previous work by proposing a CMHE/CMPC pair, fusing
these two algorithms together. We  also extend the fused algorithm
with advanced-step NMHE (asNMHE)[1] and NMPC (asNMPC) [2,3]
concept to develop an asCMHE/asCMPC pair. The developed pair
further reduces real-time computational efforts to a negligible
amount, with significant impact on its applicability to fast pro-
cesses.

This manuscript is organized as follows: Section 2 introduces
the preliminary information of our proposed algorithms. Section 3
describes the formulation of the CMHE/CMPC pair. It also presents
the derivations of the Gradient vector and the Hessian matrix.
Section 4 presents the strategy and detailed algorithm of the
asCMHE/asCMPC pair. Section 5 studies a nonlinear CSTR system
as simulation examples of the applications of the CMHE/CMPC
pair, as well as the asCMHE/asCMPC pair. Section 6 concludes the
manuscript with a summary and future directions.

2. Preliminary information

2.1. Nonlinear system under investigation

Consider a nonlinear system with noise,

ẋ = f (x) + g(x)u + �(x)w (1)

y = h(x) + � (2)

x(t0) = x0 (3)

where x ∈ Rnx is the state vector; u ∈ Rm is the vector of manipu-
lated variables, u = [u1u2 . . . um]; w ∈ Rn is the vector of unknown
process noise, w = [w1w2. . .wn]; y ∈ Rp is the output vector; � ∈ Rp

is the vector of unknown sensor noise; x0 is the initial condition at
the beginning time t0. f(x) is a nonlinear vector function; g(x) and
�(x) are nonlinear matrix functions. In this manuscript, we assume
f(x), g(x), �(x) and h(x) are known and locally analytic.

For simplicity of the presented formulations later, we  expand
matrix functions g(x) and �(x) as summations of vector functions,
gj(x), j = 1, . . .,  m and � l(x), l = 1, . . .,  n. Eq. (1) is re-expressed as:

ẋ = f (x) +
m∑
j=1

gj(x)uj +
n∑
l=1

�l(x)wl (4)

y = h(x) + � (5)

Remark 1. In this manuscript, we  assume both the process noise
w and the sensor noise � are bounded in compact sets. There are no
limitations on their distributions within the bounds.

2.2. Mathematics preliminary: Carleman approximation

The mathematical foundation of our control approach is Car-
leman approximation (the Kronecker product rule presented in
Appendix A for completeness). Carleman approximation is a two
tier approach: first, we  choose a desired steady state point to per-
form Taylor expansion to the nonlinear system under investigation.
This step naturally expresses the original state vector as deviations
from the desired steady state. These deviation terms are in a poly-
nomial form and contain higher orders. Second, we expand both
the transfered state vector and the coefficient matrices based on
the Kronecker product rule. This results in a bilinear system that
has a larger dimension.

To implement Carleman approximation, the states of the system
x are extended to

x⊗ = [xTx[2]T . . .x[p]T ]
T
, (6)

where x[p] = x ⊗ x[p−1] denotes the pth order Kronecker product of
x.

For simplicity of presentation and without loss of generality, we
assume the nominal operating point is at the origin x = 0. Nonlinear
vector functions f(x), gj(x), � l(x) and h(x) are expanded by Maclaurin
series in the following form:

f (x) = f (0) +
∞∑
k=1

1
k!
∂f[k]

∣∣∣∣∣
x=0

x[k] (7)

gj(x) = gj(0) +
∞∑
k=1

1
k!
∂gj[k]

∣∣∣∣∣
x=0

x[k] (8)

�l(x) = �l(0) +
∞∑
k=1

1
k!
∂�l[k]

∣∣∣∣∣
x=0

x[k] (9)

h(x) = h(0) +
∞∑
k=1

1
k!
∂h[k]

∣∣∣∣∣
x=0

x[k] (10)

As mentioned earlier, we  assume f(x), gj(x), � l(x) and h(x) are ana-
lytic functions (i.e., Taylor expansion is locally convergent), so
nonlinear dynamic systems of Eq. (4)(5) can be approximated by
a polynomial form with arbitrarily chosen accuracy:

ẋ ∼=
p∑
k=0

Akx
[k] +

m∑
j=1

p∑
k=0

Bjkx
[k]uj +

n∑
l=1

p∑
k=0

Dlkx
[k]wl (11)

y ∼=
p∑
k=1

Ckx
[k] + � (12)

Ak = 1
k!∂f[k]|x=0; Bjk = 1

k!∂gj[k]|x=0; Dlk = 1
k!∂�l[k]|x=0; Ck =

1
k!∂h[k]|x=0. A0 = f(0); Bj0 = gj(0); Dl0 = � l(0).

The polynomial order p is assumed to be high enough to reduce
truncation errors to below a chosen threshold [17].

A notable detail: ∂f[k], ∂gj[k], ∂� l[k] and ∂h[k] are derivatives based
on the Kronecker product rule.

∂f[k] = ∂
∂x

⊗ ∂f[k−1], ∂gj[k] = ∂
∂x

⊗ ∂gj[k−1], (13)

∂�l[k] = ∂
∂x

⊗ ∂�l[k−1], ∂h[k] = ∂
∂x

⊗ ∂h[k−1] (14)
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