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a  b  s  t  r  a  c  t

Simultaneous  occurrence  of gross  errors  (outliers/biases/drifts)  in  the  measured  signals,  and  drifting  dis-
turbances/parameter  variations  affecting  the  system  dynamics  can  lead to biased  state  estimates,  and,
in turn,  can  lead  to  deterioration  in  the performance  of  model-based  monitoring  and  control  schemes.
In  this  work,  robust  recursive  and  moving  window  based  Bayesian  state  and  parameter  estimators  are
developed  that  are  robust  w.r.t.  gross  errors  in  the measurements  and  can  simultaneously  estimate  non-
additive  unmeasured  disturbance/parameter  variations.  Using  Bayes’  rule,  the  update  step  of Kalman
filter  (KF)  is  recast  as an  optimization  problem.  The  optimization  is  then  modified  by  replacing  the  like-
lihood  term  in  the  objective  function  with  cost  function  defined  by an  M-estimator.  The  M-estimators
considered  in  this  work  are  Huber’s  Fair  function  and  Hampel’s  redescending  estimator.  The  reformu-
lated  KF is  then  used  as  a basis  for  reformulating  extended  Kalman  filter  (EKF).  This  re-formulated  EKF  is
then  used  for  developing  robust simultaneous  state  and  parameter  estimation  schemes.  In  particular,  a
robust version  of recently  proposed  moving  window  based  state  and  parameter  estimator  [1] has  been
developed.  The  resulting  formulation  can  be viewed  as  a hybrid  approach,  in  which  the  gross  errors  in  the
measurements  are  dealt  with  in a  passive  manner,  with  an  active  elimination  of  model  plant  mismatch  by
estimating  unmeasured  disturbance/parameter  variations  simultaneously.  The  efficacy  of  the  proposed
robust state  and  parameter  estimators  is  demonstrated  by conducting  simulation  studies  and  experimen-
tal  studies.  Analysis  of  the  simulation  and  experimental  results  reveal  that the proposed  robust  recursive
and  moving  window  based  state  and parameter  estimators  significantly  reduce  or  completely  nullify  the
effect of gross  errors  on the  state  estimates  while  simultaneously  estimating  drifting  unmeasured  distur-
bances/parameters.  The  simulation  study  also  underscores  the importance  of simultaneous  estimation
of  unmeasured  disturbances/parameters  while  achieving  robustness  using  the  M-estimators.  Moreover,
Hampel’s  redescending  estimator  is found  to be a better  choice  of M-estimator  than  the  popular  Huber’s
Fair  function,  as the  redescending  estimator  can completely  nullify  the  effect  of gross  errors  on  the state
and parameter  estimates.

© 2018  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Accurate information of states and parameters/disturbances
is essential for effective monitoring, control and real-time opti-
mization of any system. For chemical processes, in particular, the
majority of the system state variables are not available as mea-
surements. Only a few of the state variables such as selected
temperatures, levels, and pressures can be frequently measured.
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On the other hand, the product quality related variables such as
compositions in a reactor, molecular weight distribution in a poly-
mer reactor, biomass in fermentor, etc., are difficult to measure and
have to be inferred from the available online data and the models
relating the measurements with the quality variables. Further, the
model parameters, such as heat transfer coefficients, reaction rate
constants, and, unmeasured disturbances, such as feed composi-
tions, may  slowly drift from their nominal values over a period of
time. Thus, to operate a plant in an optimal manner, it becomes nec-
essary to track the changing parameters/unmeasured disturbances
and use them for improving performances of monitoring, control
and real-time optimization schemes.
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The accuracy of the inferred states and parameters critically
depend on the accuracy of the measurement data. In practice, the
process measurements are typically corrupted with random errors
and infrequently occurring gross errors.  Random errors correspond
to the noise in the sensors and are typically zero mean, while the
gross errors are non-zero mean signals [2]. Gross errors in the
measurements arise because of miscalibration of sensors, failure
of sensors and drift in the sensor measurements due to fouling
of the sensors, etc. [3]. The three classical types of gross errors
that occur in the operating plants are outliers, biases, and drifts.
Outliers occur due to change in power supply/fluctuations, signal
conversion, and faults that result in a sudden spike. Bias is caused
by incorrect calibration or malfunction of a sensor. Drifts are caused
by wear or fouling of sensors and occur gradually over a period of
time [4–6]. These gross errors introduce inaccurate information in
the measurements. The measurements corrupted with the gross
errors have a significant impact on the quality of estimated states
and parameters, thereby deteriorating the performance of moni-
toring, control and real-time optimization schemes. Thus, to obtain
accurate estimates of states and parameters in the presence of gross
errors, the effect of measurements corrupted with gross errors on
the state/parameter estimates has to be minimized or completely
eliminated.

While developing any dynamic model-based Bayesian state esti-
mation technique, such as the Kalman filter and its extensions
to nonlinear filtering or moving horizon estimator (MHE), it is
assumed that the measurements are corrupted only with the ran-
dom errors and measurement noise is a zero-mean white noise
process [7]. In the presence of gross errors in the measurements,
the measurement noise is no longer a stationary zero mean signal
and the exact noise distribution is difficult to determine [3]. Further,
direct use of such corrupted measurements in the estimation leads
to biases in the estimated states and parameters. Thus, the focus of
the current work is to develop simultaneous state and parameter
estimation approaches that are robust or insensitive to the gross
error in the measurements.

Achieving robustness with respect to gross errors in measure-
ments and in state dynamics has been an active area of research. The
approaches available in the literature can be broadly classified as
active and passive approaches. The active approaches try to isolate
the root cause of the gross error, estimate the gross error magni-
tude(s) and actively compensate for the gross errors while carrying
out state estimation [8–13]. This approach involves a series of tests
i.e. detection, isolation, magnitude estimation and compensation
for bias; it involves more computing. Thus, carrying out online gross
error detection and diagnosis using an active approach for larger
dimensional systems is a difficult task. The passive approaches, on
the other hand, attempt to make the state estimates insensitive to
gross errors in measurements and/or state dynamics [3,6,14–19]
and can be used relatively easily to deal with moderately large
dimensional systems.

Developing robust Kalman filters (KF) has been a major focus of
much of the literature that employs passive approaches. In fact, the
literature on robust KF treats gross errors in the measurements as
well as in the state dynamics (e.g.: non-zero mean additive drift-
ing unmeasured disturbances influencing the state dynamics). A
passive approach that has gained importance over the recent years
proposes to reduce/eliminate the effect of gross errors by integrat-
ing with Maximum likelihood type estimators (or M-estimators)
with the Kalman filter. These estimators simultaneously detect and
reduce the effect of gross errors on the state and parameter esti-
mates. Moreover, these M-estimators are independent of the state
error/measurement distributions and are also insensitive to the
deviation from the ideal distributions [20]. The common approach
that has been followed in the literature is to recast the Kalman filter
as a linear weighted regression problem and then replace the objec-

tive function using Huber’s M-estimator [14–16]. This approach
initially transforms the state estimation and measurement errors
(using square roots of their respective covariance matrices) in such
a way that the prediction and update steps in the conventional
KF calculations can be combined and reduced to a single ordinary
least squares problem. The transformed objective function is then
replaced by Huber’s M-estimators. This approach simultaneously
eliminates the gross errors in the state dynamics and the gross
errors in the measurements. Alternatively, a H∞ based KF formula-
tion has been developed that minimizes the worst-case estimation
error averaged over all samples [21]. This approach treats modeling
errors and uncertainties as unknown but bounded noise. Recently,
Gandhi and Mili [22] have developed a robust KF based on a gen-
eralized M-estimator to account for measurement, innovation, and
structural outliers.

While the majority of the available literature deals with linear
systems, some researchers have extended the Huber M-estimator
based KF formulation to incorporate robustness in nonlinear state
estimators. Karlgaard [23] has developed a robust EKF formulation,
which can be viewed as a direct extension of robust KF developed
by Boncelet [14]. On similar lines, Wang et al. [24] have devel-
oped a robust UKF formulation. Similar to Boncelet [14], both of
these formulations make use of transformed state estimation and
measurement errors to reformulate the estimation problem. Sub-
sequently, the reformulated problem is modified using Huber’s
M-estimator. It may  be noted that these extensions consider only
robustness w.r.t. additive non-stationary disturbances/gross errors
influencing the state dynamics. In practice, however, when the
system dynamics are nonlinear, the effect of drifting parameters
/unmeasured disturbances on the state dynamics is not additive.
Robustness w.r.t. both drifting parameters/unmeasured distur-
bances and gross errors in the measurements is of paramount
importance for accurate estimation of states and parameters.
Recently, Chang et al. [25] have developed a version of UKF that
is robust with respect to only gross errors in the measurements.
The covariance of innovation signal is used to transform the inno-
vations, which are then used to construct Huber’s M-estimator.
However, an attempt to achieve robustness only w.r.t. the gross
errors in the measurements, by neglecting the effects of unmea-
sured disturbances/parameter variations on the state dynamics,
can lead to biased state estimates (ref. Section 5.1). Also, working
with the transformed innovations instead of the transformed mea-
surement errors may  lead to a ’smearing’ effect on the estimated
states.

In the parallel development, attempts have been made to incor-
porate robustness in the moving horizon based state estimators
w.r.t. gross errors in the measurements [3,6,17–19]. The initial
approach was to use contaminated error distributions, where
the objective function allows for both random and gross error
structures, each with a certain amount of probability [3]. The dis-
advantage of this approach is that the distribution of the gross
errors should be characterized well in advance. Also, the esti-
mates are sensitive to the contaminated normal distribution. The
other approach is to use Huber’s M-estimators in place of the
likelihood term in the cost function. The likelihood term in the
objective function can be easily replaced with an M-estimator,
and the resulting formulation generates results comparable to
an active approach without any iterative or sequential computa-
tions [19]. Further, the residuals obtained are unbiased and can
be used for gross error detection and identification. M-estimators
such as Huber’s Fair function, Cauchy function, Lorentzian function,
Hampel’s redescending estimator and logistic function, have been
used for achieving robustness w.r.t. gross errors in measurements
[3,17,19,26]. Nicholson et al. [18] developed a robust moving hori-
zon estimator (MHE) by integrating the M-estimators in the MHE
objective function, where the approach is demonstrated for estima-
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