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A  novel  extremum  seeking  scheme  is proposed  for the  optimization  of the  specific  growth  rate  in  fed-
batch  processes  with  substrate  inhibited  kinetics.  The  proposed  controller  is based  on  a high  order  sliding
mode  algorithm,  which  uses  the  gradient  of  the  specific  growth  rate  as switching  coordinate.  A  gradient
estimation  is  obtained  through  a high  order  sliding  mode  observer.  Both  the  control  and  gradient  estima-
tion  algorithms  are  finite-time  stable.  The  stability  of the controller  is  analysed  using Lyapunov  functions
for  both  the  unperturbed  and  perturbed  cases  and  guidelines  for the  algorithm  tuning  are  provided.  The
controller  and  observer  algorithms  are  numerically  assessed  and  simulation  results  are  obtained  for  a  set
of  different  scenarios.
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1. Introduction

In many biotechnological process applications it is important to
optimize the reaction rates in order to obtain high productivities
or favour metabolic states. For example, the maximization of the
specific growth rate allows obtaining the largest amount of biomass
for a given process duration. When the microorganism has non-
monotonic kinetics (e.g. Haldane) there is a particular substrate
concentration which maximizes the specific growth rate.

From the control viewpoint, on-line process optimization con-
sists in regulating the specific growth rate at a given optimal value,
or equivalently, in regulating the substrate at the optimal concen-
tration. A wide variety of closed loop algorithms have been reported
in the literature aimed at regulating growth rates or concentrations.
For instance, closed loop versions of an exponential feeding law are
given in [1–3], linearizing control is studied in [4] along with its sta-
bility for operating points at both sides of the optimum. Adaptive
linearizing control is one of the most developed techniques [5–7],
introducing the use of observers to estimate unmeasured variables
or parameters. Also, growth rate regulation has been developed
in [8,9] based on geometric invariance concepts. These approaches
are able to deal with common issues such as parameter uncertainty
and lack of on-line measurements. However, a previously known
set-point or trajectory is required either for the regulation of the
kinetic rates or concentrations.
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Extremum-seeking control provides tools to accomplish real
time optimization of the process. The basic concept of extremum
seeking is to define a control action which allows searching an
operating point where a given objective function is maximized
(or minimized). A survey on the application of extremum seek-
ing to bioreaction processes was done in [10] where two types
of extremum seeking schemes are defined. First, the perturbation-
based scheme where the process is treated as black-box and the
objective function is not known but measured. The control tech-
nique consist in disturbing the input of the process with a dither
signal, then an estimate of the gradient is obtained by filtering and
modulating the measured output which is later used to define a
control action. This type of scheme has been developed in depth
in [11] and the application to a continuous tank reactor can be
found in [12] for volumetric growth rate maximization. Similarly, in
[13] the specific growth rate is maximized but the gradient estima-
tion is obtained with a generalized super-twisting (GST) observer
rather than by filtering and modulation. The second scheme is the
model-based extremum seeking, where only the objective function
structure is known but not the parameters values. These are esti-
mated on-line and the location of the optimum is determined from
the estimations resulting in an adaptive algorithm. Many examples
can be found in the bibliography as in [7,14–16].

Both the perturbation-based and model-based techniques are
equally valid. The first one requires minimum knowledge of the
process but the process needs to be persistently disturbed and the
final state is likely to oscillate around the optimal operating point.
The model-based extremum seeking has the advantage that some
degree of transient performance can be guaranteed. However, a
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model structure needs to be assumed and included in the design,
moreover, the dither signal is still used to ensure the excitation per-
sistence necessary to estimate the parameters. Also, the resulting
algorithms are generally more complex.

More recently, alternative approaches are being developed in
the bioprocess control field in an attempt to bring together some
of the advantages of the perturbation-based and model-based
schemes. The goal is to design algorithms that do not rely vastly in
the process models but giving certain guarantees on the transient
response. Then, the objective function is unknown but its value can
be measured or estimated from the process states. As it is necessary
to disturb the plant to locate the optimum position, switched con-
trol algorithms like sliding mode control fit suitably for the task.
The decision variable which produces the control switch can be
in some cases an estimation of the error between the current and
optimal substrate concentrations or the gradient of the objective
function. In [17] a pseudo-super-twisting controller (PSTC) is pro-
posed to maximize the gas production rate in an activated sludge
process, where the substrate error is used as sliding coordinate.
The sign of the error is estimated with a state machine analyzing
the changes in the measured gas rate and the substrate. However.
the magnitude of the error is estimated with a static function rather
than with a closed loop algorithm. A similar approach is taken in
[18] for the gradient estimation but using an output-feedback two-
level controller instead of the PSTC. In [19] specific growth rate
maximization is achieved with a first order sliding mode (FOSM)
controller using an estimation of the gradient as sliding coordi-
nate. The gradient estimation is obtained by the discrete estimator
proposed in [20] using substrate concentration and gas produc-
tion rate measurements. The growth rate is driven successfully to
a neighborhood of the optimal value, however chattering issues
are present, at least for gains large enough to reject the studied
disturbances. These works have in common that both the control
algorithms and decision variable estimations are run with a sam-
ple time large enough to let the output show some variation, which
also introduces additional dynamics to the loop.

In this work, a new extremum seeking scheme is proposed
to maximize the specific growth rate in fed-batch processes. The
scheme is based on a high order sliding mode (HOSM) controller
where the sliding coordinate is an estimation of the specific growth
rate gradient with respect to the substrate. The gradient estimation
is obtained from a HOSM observer after setting the problem into
the form of a parameter estimation problem. In contrast with the
model-based techniques, the proposed extremum seeking scheme
does not require the inclusion of the kinetic model structure in its
design. Only some bounds on its curvature are required to guar-
antee stability. Hence, only a partial model is required, involving
only yields and influent substrate concentrations. Moreover, no
dither signal is added to the process input like in the perturbation
and model-based schemes, instead, it is replaced by the switched
nature of the controller with the advantage that the switching
action becomes zero in the desired operating point. Another advan-
tage of the HOSM control over the FOSM, like the one in [19], is
that the control action (dilution rate) is continuous and hence the
chattering, usually associated to this kind of controller, is signif-
icantly reduced. Also, the integral term, which is not present in
the previous case, allows to reject any constant disturbance. In this
work, finite-time stability proofs are also given for the proposed
controller (for the first time), first for the nominal case and then
considering bounded disturbances. In previous contributions, like
[21,22], the stability problem was solved numerically, in this work
a Lyapunov function is derived for the HOSM controller. A stable
operating region is derived from the stability proofs, and tuning
guidelines are given for the case in which an approximate kinetic
model is available. The proposed gradient estimation is performed
in continuous time rather than with the (slow) sampling time of the

Table 1
Variables and parameters.

Name Description

x Cell concentration
s Substrate concentration
sf Fed substrate concentration
v Volume
D Dilution rate
yxs Substrate to biomass yield
�  Specific growth rate
ω(s) Gradient of �(s) w.r.t. s
h(s) Hessian of �(s) w.r.t. s

controller, like in [17–19]. The advantage in this is that the estima-
tion converges in finite-time and no additional dynamics are added
to the closed loop. Another significant difference with many of the
works reported in the bibliography is that the proposed control
and gradient estimation scheme is based solely in the measure-
ment of cell concentration. This constitutes and advantage in many
cases, for example in industrial processes were waste or impure
substrates are used. Carbon source or nitrogen on-line measure-
ment may  be possible in some cases, but is generally expensive
and affine to certain specific substances. On the other hand, cell
density can measured by optical density methods or even dielectric
spectroscopy in a range of different processes and conditions.

2. Problem formulation

The model for fed-batch processes in terms of concentrations is
obtained from mass balance equations:

ẋ = (� − D)x (1)

ṡ = −�x
yxs

+ D(sf − s) (2)

v̇ = Dv (3)

where all the variables and parameters are referenced in Table 1. It
is assumed that an excess of substrate concentration has an inhibit-
ing effect on the specific growth rate, hence, the kinetic of the
microorganism is non-monotonic and holds a maximum �∗ at an
optimal substrate concentration s∗. It is also assumed that neither
the kinetic model or its structure are known, either by uncertainty
or lack of identification, therefore the location of the optimal oper-
ating point (s∗, �∗) is unknown.

At this point it is convenient to define some other variables that
are important for the proposed control and estimation scheme.
Supposing that the specific growth rate is a function of the limiting
substrate s only, the gradient of � can be defined as

∇� = ∂�(s)
∂s

= ω(s), (4)

which in this case is scalar because it was supposed that � depends
on a single variable. The gradient is the slope of the kinetic map  and
indicates the direction in the s axis for which � increases. Another
important variable is the Hessian defined as

∇2� = ∂
2
�

∂s2
= h(s), (5)

which is also scalar and describes the curvature of the kinetic map.
It is a necessary condition for the the operating point (s∗, �∗) to be
an extreme that ω(s∗) = 0. Particularly, it is a sufficient condition
for that point to be a maximum that h(s∗) < 0 [23].

Having defined both the gradient ω(s) and Hessian h(s) of the
map  (ω and h from now on) it is possible to extend the process



Download	English	Version:

https://daneshyari.com/en/article/7104099

Download	Persian	Version:

https://daneshyari.com/article/7104099

Daneshyari.com

https://daneshyari.com/en/article/7104099
https://daneshyari.com/article/7104099
https://daneshyari.com/

