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a  b  s  t  r  a  c  t

We  report  the  closed-loop  performance  of  adaptive  model  predictive  control  (MPC)  algorithms  for  a
dual-hormone  artificial  pancreas  (AP)  intended  for patients  with  type  1 diabetes.  The  dual-hormone  AP
measures  the  interstitial  glucose  concentration  using  a subcutaneous  continuous  glucose  monitor  (CGM)
and administers  glucagon  and  rapid-acting  insulin  subcutaneously.  The  discrete-time  transfer  function
models  used  in  the insulin  and  glucagon  MPCs  comprise  a deterministic  part  and  a stochastic  part.  The
deterministic  part  of  the MPC  model  is  individualized  using  patient-specific  information  and  describes
the  glucose-insulin  and  glucose-glucagon  dynamics.  The  stochastic  part  of the  MPC model  describes
the  uncertainties  that are  not  included  in the deterministic  part  of  the  MPC model.  Using  closed-loop
simulation  of  the  MPCs,  we evaluate  the performance  obtained  using  the  different  deterministic  and
stochastic  models  for  the MPC  on  three  virtual  patients.  We  simulate  a  scenario  including  meals  and  daily
variations  in  the  model  parameters  for two  settings.  In  the  first  setting,  we  try  five  different  models  for
the  deterministic  part  of the MPC  model  and  use a fixed  model  for the  stochastic  part  of  the  MPC  model.
In  the  second  setting,  we use a second-order  model  for the  deterministic  part  of  the  MPC  model  and
estimate  the  stochastic  part  of  the  MPC  model  adaptively.  The  results  show  that  the  controller  is  robust
to daily  variations  in  the  model  parameters.  The  numerical  results  also  suggest  that  the  deterministic
part  of  the  MPC  model  does  not  play  a major  role  in the  closed-loop  performance  of MPC.  This  is  ascribed
to  the  availability  of feedback  and  the poor  prediction  capability  of the  model,  i.e. the  large  disturbances
and  model-patient  mismatch.  Moreover,  a second  order adaptive  model  for  the  stochastic  part  of the  MPC
model  offers  a  marginally  better  performance  in  closed-loop,  in  particular  if the  model-patient  mismatch
is large.

© 2018  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Diabetes is a metabolic disease affecting around 9% of the world-
wide adult population in 2014 and its prevalence is increasing
[1]. When untreated, it is characterized by elevated blood glu-
cose levels, i.e. hyperglycemia. Type 1 diabetes (T1D) accounts
for 5–10% of the patients suffering from diabetes. T1D develops
when the immune system destroys the insulin-producing �-cells
in the islets of Langerhans in the pancreas. This condition leads to
a deficiency in endogenous insulin production. To keep the glucose
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level under control and avoid the long-term complications asso-
ciated with hyperglycemia, patients with T1D have to administer
insulin exogenously. Nowadays, an increasing number of patients
with T1D use a continuous subcutaneous (sc) insulin infusion (CSII)
pump combined with an sc continuous glucose monitor (CGM). This
sensor-augmented pump therapy has improved glucose regulation
compared to multiple daily insulin injections (MDI) using a pen
combined with fingerprick glucose measurements [2–4]. Neverthe-
less, the current insulin therapies are usually titrated empirically
by the patient and their physician, and still a majority of patients
with T1D do not meet treatment goals due to difficulties to control
their blood glucose [5].

For more than 50 years, scientists have been trying to replace
the patient decisions with an automated closed-loop insulin deliv-
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Nomenclature

AG [–] Carbohydrate bioavailability
D1(t), D2(t) [mg/kg] Glucose in the first and the second com-

partment per body weight
DG(t) [mg/kg/min] Carbohydrate intake per body weight
G(t) [mg/dL] Blood glucose concentration
Gb [mg/dL] Basal blood glucose concentration
Gsub(t) [mg/dL] Interstitial glucose concentration
I(t) [�U/dL] Plasma insulin concentration
Ib [�U/dL] Basal plasma insulin concentration
ke [min−1] Insulin clearance rate
kN [min−1] Glucagon clearance rate
N(t) [pg/dL] Plasma glucagon concentration
Nb [pg/dL] Basal plasma glucagon concentration
p2 [min−1] Inverse of a time constant describing insulin

action
p3 [min−1] Inverse of a time constant describing glucagon

action
Ra(t) [mg/min/kg] Glucose rate of appearance per body

weight
S1(t), S2(t) [�U/kg] Two-compartment absorption model of

subcutaneously administered insulin
SG [min−1] Fractional glucose effectiveness
SI [min−1/(�U/dL)] Insulin sensitivity
SN [min−1/(pg/dL)] Glucagon sensitivity
tI [min] Insulin absorption time constant
tN [min] Glucagon absorption time constant
tsub [min] Time constant associated to glucose transport

from blood to interstitial tissues
u1(t) [�U/kg/min] Subcutaneous insulin infusion rate per

body weight
u2(t) [pg/kg/min] Subcutaneous glucagon infusion rate per

body weight
V [dL/kg] Glucose distribution volume
VI [mL/kg] Distribution volume of plasma insulin
X(t) [min−1] Insulin action
Y(t) [min−1] Glucagon action
Z1(t), Z2(t) [pg/kg] Two-compartment absorption of subcu-

taneously administered glucagon

ery system, known as the artificial pancreas (AP) [6,7]. A major
concern for an AP is safety and in particular its ability to avoid
insulin-induced hypoglycemia (low blood glucose). One way  to
prevent hypoglycemia or to reduce the duration of hypoglycemic
events is to include glucagon in the AP. While insulin decreases the
blood glucose concentration, glucagon increases the blood glucose
concentration. An AP able to administer insulin and glucagon is
referred to in this paper as a dual-hormone AP while it in other
works also is referred to as a bihormonal AP or a (bihormonal)
bionic pancreas [8–16]. Current versions of the dual-hormone AP
consist of a CGM, a control algorithm, and two pumps for insulin
and glucagon administration. Regular glucagon is not stable in an
aqueous liquid formulation under standard conditions and has to
be dissolved immediately before use. Therefore, its use has been
limited to hypoglycemia rescue kits. Stable liquid formulations
of glucagon or glucagon analogues have the potential to be used
in pumps [17–19]. Results from simulations and clinical studies
show that a dual-hormone AP has the potential to increase the
safety of the glucose control and provide tighter regulation than
a single-hormone AP without increasing the risk of hypoglycemia
[10,11,14,15,20–22]. However, the conditions at which glucagon is
efficient as well as the long-term benefits and risks of exogenously
administered glucagon still remain to be investigated [23–25].

Various control strategies for the AP have been investigated and
tested [26–32]. The comparison between these control strategies
is beyond the scope of this paper. Yet, a popular approach with
promising results is Model Predictive Control (MPC) [33–41]. At
every time sample, an optimal control problem (OCP) is solved to
optimize the insulin or glucagon dosage based on (i) the glucose
levels, the insulin and the glucagon history, (ii) an individualized
filtering and prediction model describing the effects of sc deliv-
ered insulin and glucagon on the interstitial glucose concentration
measured by an sc CGM, (iii) a desired glucose trajectory, and (iv)
feedforward information (e.g. meal announcement). The insulin or
glucagon input corresponding to the first sample period is admin-
istered to the patient and this procedure is repeated at the next
time sample (for instance when a new CGM measurement becomes
available). The main advantage of MPC  is the ability to take into
account the constraints on inputs and outputs in a straightforward
and proactive way.

One component of the MPC  is the model used to make pre-
dictions. Several linear models used for modeling and/or control
have been tested: Gondhalekar et al. used a second order trans-
fer function with a delay [42]; Kirchsteiger et al. used a third order
transfer function with an integrator [43]; Heusden et al. used a third
order discrete transfer function model [44]; Percival et al. applied
a first order transfer function with a time delay and an integrator
[45]. Soru et al. and Messori et al. used higher order linear models
with 13 states [46,47]. In our previous work, we established that
the choice of the transfer function model describing the glucose-
insulin dynamics does not significantly affect the performance of
the closed-loop controller [48] and we  used a second order transfer
function model [22,49,50].

Disturbances, such as meal intake, physical exercise, stress, ill-
ness and metabolic changes affect the insulin needs throughout the
day. These disturbances have to be distinguished from CGM noise.
The effects of these disturbances are difficult to estimate, and there-
fore are usually represented as a disturbance model [51]. The tuning
of this disturbance model can play a significant role in the perfor-
mance of the closed-loop controller [52–55], but its importance in
the design of an AP has not been investigated in detail. An adaptive
control algorithm can contribute to the tuning of the disturbance
model [37,56,57].

The purpose of the present paper is to discuss the importance
of the model used by the MPC  in an AP for its closed-loop per-
formance. We  investigate the effect of the deterministic part of
the MPC  model as well as the effect of the stochastic part of the
MPC  model. We  do this by studying the resulting simulated closed-
loop performance obtained by the MPC  for different filtering and
prediction models using a nonlinear simulation model, which is dif-
ferent from the filtering and prediction models used by the MPC.
We use a control strategy that allows administration of insulin
and glucagon. We  state and compare MPCs based on five differ-
ent low order models for the deterministic part of the MPC model,
and two different lower order models for the stochastic part of the
MPC  model, such that these models can easily be identified in a
clinical study. Also, an advantage of our approach is that the con-
troller design only requires patient-specific information and does
not use any prior clinical data. The closed-loop simulations are con-
ducted for three virtual patients using a scenario consisting of 30 h
with everyday meal events and parameter variations reflecting the
circadian rhythm.

Fig. 1 shows a diagram of the AP setup used in this paper. A
model simulates the glucose-insulin-glucagon dynamics for three
virtual patients. This simulation model is summarized in Section 2.
Section 3 introduces individualized control-relevant deterministic
transfer function models of insulin-glucose and glucagon-glucose
dynamics that are used in the MPC. Section 4 describes the stochas-
tic model structure considered in the paper, the recursive extended
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